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I. INTRODUCTION

The orthogonal collocation method is used to obtain approximate
solutions to the differential equations modeling chemical reactors.
There are two ways to view applications of the orthogonal colloca-
tion method, In one view it is a numerical method for which the
convergence to the exact answer can be seen as the approximation
is refined in successive calculations by using more colloca-
tion points, which are similar to grid points in a finite difference
method. Another viewpoint considers only the first approximation,
which can often be found analytically, and which gives valuable in-
sight to the qualitative behavior of the solution. The answers, how-
ever, are of uncertain accuracy, so that the calculation must be re-
fined to obtain useful numbers. However, with experience and appro-
priate caution, the first approximation is often sufficient and is easy
to obtain. Thus it is very often useful in engineering work, where
valid approximations are accepted. We present both viewpoints here:
we use the first approximation to gain insight into a problem and we
refine the calculations to obtain numerical convergence to the exact
result. In this later view the method is similar to and in direct com-
petition with finite difference methods, and some of the references
listed in the next section discuss the relative advantages of the
orthogonal collocation method.

We apply the method to problems arising in chemical reaction
engineering. The presentation begins with a description of the
method and then is organized around three case studies. In treating
these case studies we give attention to methods by which we can
ascertain a priori when certain heat and mass transfer phenomena
is important, and then, if it is important, how that complication is
incorporated in the orthogonal collocation formulation of the mathe-
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matical model. An SO, oxidation reactor is treated first since al-
most all steady-state heat and mass transfer phenomena are im-
portant in the particular application. An ammonia reactor is in-
cluded as an example involving countercurrent heat transfer. Finally
a quasi-static model is developed for the reduction of nitric oxide in
automobile exhaust. Since the inlet conditions to the reactor vary
widely with time, it is necessary to consider a transient model.
Several assumptions can simplify the transient model, but even so
the computational requirements are extensive. The orthogonal col-
location method is used to reduce the computation time compared to
finite difference methods. The application of orthogonal collocation
in several other areas is outlined briefly.

II. ORTHOGONAL COLLOCATION METHOD

A. General Features of Method

The orthogonal collocation method was first developed by Villad-
sen and Stewart [1], and itis a special case of the collocation method
and the method of weighted residuals, which are discussed in more
detail elsewhere [2]. In most subsections of this section we con-
sider only one-dimensional problems; that is, the solution depends
on only one position, x, and we treat two-dimensional cases in Sec-
tions II-E and III. The unknown exact solution is expanded in a
series of known functions, {y;(x)} which are chosen to satisfy as
many conditions of the problem as is feasible: symmetry conditions
and possibly boundary conditions. The series of functions is called
a trial function.

N
trial function = y*(x) = 2Ja,y,(x) 1)
i=1

The unknown coefficients in the series are to be determined in such
a way that the differential equation is satisfied in some “best” way.
In the collocation method the differential equation is required to be
zero at a set of grid points, called collocation points. The trial func-
tion is substituted into the differential equation, and the result is
called the residual. The residual will be zero throughout space for
the exact solution. For the approximate solution the residual is re-
quired to be zero at the collocation points, and this determines the
unknown coefficients in the trial function. As more terms are in-
cluded in the series, there are more unknown coefficients, and hence
the residual is set to zero at more collocation points. The hope is



72 B. A. FINLAYSON

that as the number of collocation points goes in infinity, and the re-
sidual is zero everywhere, that the approximate solution so gener-
ated converges to the exact solution. This can be proven in many
problems. There are two basic ideas in the collocation method. One
is similar to finite difference methods: the differential equation is
satisfied at a set of grid or collocation points. The other idea is that
the solution is expanded in a series which gives a continuous repre-
sentation of the approximate solution over the whole region of space.
In finite difference methods the solution is obtained by interpolation
between adjacent grid points. In the orthogonal collocation method
the continuous representation of the solution over the whole region
has important advantages in that it increases the rate of conver-
to the exact solution as the number of collocation points is increased.
In this article we adopt an operational explanation of orthogonal
collocation; that is, we show how to apply the method and leave the
supporting theory to more extensive treatises [2]. In the orthogonal
collocation method we make two improvements to Eq. (1): the trial
functions are orthogonal polynomials (which improves the rate of
convergence as N increases) and the computer programs are written
in terms of the solution at the collocation points, {y*(x,)}, rather
than the coefficients {a,}. From Eq. (1) we see that since y,(x,) are
known, knowledge of {y*(x,)} implies knowledge of {a,} and vice
versa. Use of {y*(x,)}, however, simplifies the computer program-
ing.

B. Orthogonal Collocation for Problems with Symmetry

In problems such as diffusion and reaction in a spherical or cy-
lindrical catalyst pellet, or reaction in a cylindrical packed bed re-
actor, the solution is symmetric about the center of the catalyst
pellet or the axis of the packed bed. In those problems the boundary
condition is expressed as

x=0

For some problems it can be shown that this implies the solution is
a function of x? rather than just x. In that case it is desirable to in-
clude this symmetry in the trial function because it reduces the num-
ber of unknowns by a factor of two,

We thus expand the solution in terms of orthogonal polynomials
in powers of x2:

y*a?) =b + (1 — xz)iﬁa.m-l(xz) @
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where N is the number of interior collocation points and the colloca-
tion points are the roots to Py(x?) = 0. The roots for N from 1 to 6
are listed in Ref. 2, Chap. 5, and information is given there as to
roots for higher N.

The orthogonal collocation method is applied by substituting the
trial function, Eq. (2), into the differential equation, which is set to
zero when evaluated at each collocation point x,. Derivatives of y*
at the collocation points can be found in terms of {a,} from Eq. (2),
and hence {y*(x;?)}. Thus the residual is expressed only in terms
of y*(x,%). To illustrate the procedure, consider the problem of re-
action and diffusion in a catalyst particle:

oo ) - A (3

Lom=0, —FW=BiE1) -1 @
S et ax

n= 2 (5)

Jler)x>t dx

4]

where Bi, is a Biot number for mass transfer. The residuals at the
interior collocation points are simply

N+1

2 By, = ‘.bzf(Yj), i=1,...,N (6)

1=1

where the B matrix represents the Laplacian at the collocation
points. It is listed in Table 1, and is derived as indicated in Ref. 2,
p. 100. The first boundary condition is satisfied identically. The
second boundary condition gives

N+

_1Z>1 AN+1,iYi = Bim(YN+|, - 1) (7)

where the A matrix represents the first derivative. Equations (6)
and (7) provide N + 1 equations to solve for the N + 1 values of the
approximate solution at the collocation points, y, — V¥n+1. The effec-
tiveness factor is then given by

N+1 N+1
n= ‘ZJI f(}’x)wg/[f(l)l§ Wi]

where W, are the weighting factors for accurte quadrature formulas.
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TABLE 1
Matrices in Orthogonal Collocation Method for N = 12

Planar geometry,a =1

0.4472 W= 0.8333 A= —1.118 1.118 B= —25 25
1.0000 0.1667 —2.500 2.500 —2.5 25
Cylindrical geometry, a =2
05774 W= 0.375 A= —1.732 1.732 B= —6 6
1.0000 0.125 —3.000 3.000
Spherical geometry, a = 3
= 0. 6547 W= 0.2333 A= —2.291 2.291 B= —10.5 10.56
1.0000 0.1000 —3.500 3.500 —10.6 10.5

Nonsymmetric polynomials. A: d/dx. B: d?/dx?

0.0 1/6 -3 41 4 -8 4
x=(0.5 w={2/3 A=|-1 01 B={4 -8 4
1.0 1/6, 14 3 4 8 4

aSymmetric polynomials. A, First derivative.B,LapIacianL_ 4 -1 d
X3~ dx dx

The solution of Eqs. (6) and (7) is usually done on a computer,
since the equations are generally nonlinear and complicated for
N > 1, It is instructive to look at the case N = 1, however, since an
analytic solution is possible. Take a plane slab, a = 1, f(y) = y%, and
large Bi,, so that the boundary condition becomes y(1) = yy,, =1.
Then for N = 1, Eqs. (6) and (7) are

—2.5y, + 2.5y, = ¢*y,%y, =1

where the appropriate values of B have been obtained from Table 1,
The solution is

y, = [—2.5 + (6.25 + 1092)*/2]/2¢2 (8
and the effectiveness factor is

N = (W,y,2 + W,3.2)/ (W, + W,)

=37+ & (9)

Thus we can calculate 7 vs ¢ using Eqs. (8) and (9). The approxima-
4



ORTHOGONAL COLLOCATION 75

tion is valid provided ¢ < 2, and the reasons it is not valid for larger
¢ and how one determines the limit of 2 are discussed below.
For an unsteady-state problem,

0 1 o
S &(x%) — #ea(yte,t) (10)

with boundary conditions (4), we solve for y,(t) = y(x,,t). At any
time t,

1 ° a_lay _ N+1
X155 (x = = ;Z=)1 Byy,y(t)

X

and at any collocation point x;,

ay(x,t)
ot

i3

X5

Thus we collocate at spatial positions x, to obtain

dy, _§3'g %(y,), j=1 N (11)
—dt—“=l jlYi_‘p (y]’ =1 ...,

and the boundary condition (7). Equation (11) is integrated using
standard techniques for ordinary differential equations.

The application of orthogonal collocation to solve problems such
as Eq. (3) or Eq. (10) is relatively straightforward. The collocation
points must be known, but are readily available. The matrices B
and A are generated using the simple algorithm described in Ref. 2,
and the Eq. (6) and (7) or (11) and (7) are solved using standard
methods.

It is important, of course, to know a priori if the solution is a
function of x or only of x2. Sometimes this can be deduced by ex-
panding the solution in a power series and deriving a recursion re-
lation:

«©
y =2 axt
1=0

First a, = 0 because of the boundary condition, Eq. (4). Often a, de-

pends only on a,, and a, = 0 implies a, = 0, If this process continues

so that a, = 0 for all odd i, then the symmetric trial functions of this
section can be used. If not, the procedures in the next section can be
used. It is worthwhile to use symmetric trial functions if they are
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applicable because the number of collocation points, and hence un-
knowns, is cut in half.

C. Orthogonal Collocation for Problems without Symmetry

When the solution is not a function of x2 it is necessary to include
both even and odd powers of x in the expansion, In place of Eq. (2)
we then take

y*x) =b +ex +x(1 — x)lia‘Pi_l(x) (12)

The matrices for first and second derivatives are different, but the
application is otherwise similar. For large N the matrices can be
derived without inverting a matrix by using the procedure given in
Ref. 3.

Let us apply the method to a isothermal chemical reactor with
axijal dispersion:

1 dy dy _

ﬁe_2___f(y).o (13)
1 dy _ _

Peax Y-l atx=0 as
dy _ -

= =0, atx =1 (15)

The residuals at the collocation points are

1 N+2 N+2 .
P"—e—z B“.yl - E A“Yi — f(y,) = O, ] = 2, ey N + 1 (16)
i=1 i=1

1 N+2
EZJI A=y, —1 (m
N+2
‘E Aye,i¥i =0 (18)
=1

These equations are then solved for the solution {y,}, with y, = y(0),
Vnez = ¥(1),and y,, i =2, ..., N + 1 being the solution at the interior
collocation points, x,, ..., Xy,,.
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D. Integration of Ordinary Differential Equations as Initial
Value Problems

Orthogonal collocation can be applied to the integration of ordi-
nary differential equations as initial value problems, too. The pro-
cedure was first outlined by Villadsen and Sgrensen [4]. The initial
condition gives y,, the solution at the first collocation point. Ortho-
gonal collocation is then applied, as in Eqgs. (13) and (16) with
Pe — <, except that the residual, Eq. (16), is calculated for j = 2,
..., N+ 2, i.e., including the last collocation point. Further details
are given in Ref. 2, p. 107.

E. Two-Dimensional Problems

For two-dimensional problems we merely combine the orthogonal
collocation method for each separate dimension. We can do this pro-
vided the boundaries of the problem lie along coordinate lines.

Let us illustrate the application by treating the problem of diffu-
sion and reaction in a cylindrical catalyst pellet of finite length:

Py 1 2 [ 3y

2 — —_— =

oz T or (r 8r> o4(y) (19)

%y _ =

== 0, atr=0,allz (20)

% _g atz=0allr (21)

3z ’ ’

_%=Bim(y_1), atr=1,0<z<1 (22)
oy .

-3 =By —1), atz=1,0<r<1 (23)

where Bi,, is taken as constant around the cylinder. Now we write
BR for the matrix B used in Section II-B for cylindrical geometry,
and BZ for the matrix B used for plane geometry. If the problem
was not symmetric in the z direction, we would use the other matrices

from Table 1. Next let y,, = y(r,,2z,). The residuals at the ij-th collo-
cation points are then

NZ «1 NR +1
62 EE BZlEyll+ iz; BR!RYZI =¢2f(y“), i=1, ey NR;j =1, e oy NZ

=1 =1
(24)
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The boundary conditions are

NR +1

—ZZZ ARNR»[,P.YH = Bim(YNRﬂ,i - 1): i=1,...,,NZ (25)
NZ+ .

- 22-31 AZNZﬂ,R.YUZ = Blm(Yi,Nz+1 -1), i=1,...,NR (26)

The effectiveness factor is given by

NR N2z
2 Zf(Yu)WRxWZI

n = i=1 J=1 (27)
£(1) Z} WR, E Wz,
j=

i=1

Here we have used orthogonal polynomials that result in WRy,, =
WZy,, =0 (those with w = 1 in Chap. 5 of Ref. 2), Then the corner
point, yyg, nz. does not enter the calculation,*

To apply the orthogonal collocation method in two-dimensions,
we simply used the matrices derived for one dimension in appro-
priate combinations. It was not necessary to write down the trial
function. If the trial function is desired, though, it can be constructed
as the product of the two one-dimensional trial functions, with appro-
priate renumbering of equations:

NR
y(r)=b+ (1 — rz)iZ_)!asP;-l(rz)

NZ
y(z2) =b’ + (1 — 22) 25 a/P,_ (2%
1=1
Multiplying these together gives

NZ NR
y(r3)y(z?) = bb’ + (1 — 2?) 2 ba,'P, '(z?) + (1 — r?) 2 b'a,P,_ (r?) +
i=1

(1-23(1 - r? Z; E aias |(r2)P;(22)
=zl §=
*The two boundary conditions (22) and (23) are also not applied at the corner,r=1,
z = 1. If they were to be satisfied, there would be two conditions and only one unknown
to choose: yNR+1Nz+1- If it is necessary in some problem to include this corner point,

then the degree of each polynomial can be increased by one. Then the set of unknowns
is the function at each collocation point and the normal derivatives at the boundary. The
residual is evaluated at every collocation point, including the boundary points, and the
boundary condition is applied as well at the boundary point.
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We rewrite this as

NZ NR
y(r3,z?) =b + (1 — 2%) 25¢,P,,"(2?) + (1 — r?) 25 d,P;,(r?)
i=1 1=1

NR NZ
+(1 — z3)(1 — r"’)‘Z)l jEﬂe 4Py(r®)P, (z?) (28)

We cannot determine b unless the corner point y(1,1) is found.

F. Orthogonal Collocation on Finite Elements

All the previous applications of orthogonal collocation have used
trial functions defined over the whole domain. For some problems
the interesting features of the solution are confined to a narrow
region, perhaps as a boundary layer. The orthogonal collocation
points corresponding to the trial function may not be located in those
regions where the solution changes rapidly or is of the most interest,
thereby deteriorating the approximation. Thus we are led to the de-
sire for a method which permits the arbitrary location of collocation
points. We also want to preserve the convenient features of the
orthogonal collocation method inasmuch as possible. The method of
orthogonal collocation on finite elements meets this requirement.

We present the ideas in the context of a one-dimensional problem
of diffusion and reaction in a spherical catalyst, Eqs. (3) and (4) with
a = 3, The domain 0 < x <1 is divided into elements, and the k-th
element extends from x , to x ,,,. In each element we change the
independent variable so that it goes from 0 to 1:

X— X _ X— X

u=
Kga — Xy Ax,

The differential equation within the k-th element is then

1 dy 2 1 dy
(Bx du? * x; + ubx, Ax, du ¢71(y) (29)

Applying orthogonal collocation on 0 < u < 1 gives

1 N+2 N 2 1 N+2 « .
(ax,)? iZ=>1 By, + m AX_HZJIA“}“ = ¢%(y,"),

(30)
ji=2,..,N+1

for the residual at the interior collocation points of the element,
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u,, ..., Uy,. The points u, and uy,, are the end points of the element.
The y,* is the solution at the i-th collocation point of the k-th ele-
ment. Between each element we require that the function and its
first derivative be continuous, Thus we set

YN+2k-1 = YI.k; yN¢2k = YIk.l (31)
1 Na+2 1 Ne2
A . k-1 _ A k 32
s 1§1 N2, 1Y 1 %, | 1};’1 11¥1 (32)
1 Ii‘jzA X 1 NZ.?A k+1 (33)
A%, = Nez,a¥1 = Xt 1Y

In the solution of these equations, Eq. (31) is satisfied automatically
by using the same variable for the solution at the last point of one
element and the first point of the next element. The solution vector
is written as

S-'T = (y11’Y2lv e ey Yu.zls Y22!Y32’ o0y szz, Y23a sy yN*zuE)

with NE as the total number of elements. This vector is renumbered
as ’

¥' =¥z ..o ¥1); L=NEN+1)+1
The equations can then be written in the form shown in Fig. 1. The
matrix on the left-hand side is a block diagonal matrix and is readily

inverted, It is not necessary to store all the zeros in the computer.
Methods of solution are discussed in more detail elsewhere [5]

G. Comparison of Methods

The methed of orthogonal collocation on finite elements is a com-
bination of orthogonal collocation and finite difference methods. It
is instructive to compare the methods to see their advantages. The
rate of convergence for the usual second order difference scheme
is Ax? or (1/N)?, where N is the number of grid points minus one
and Ax is the grid spacing. By contrast the orthogonal collocation
method, using a continuous polynomial defined over the entire do-
main, converges as (1/N)¥, where N is the number of interior collo-
cation points and provided the exact solution is highly continuous[6].
Clearly for large N the rate of convergence is very fast. The method
of orthogonal collocation on finite elements converges as (Ax)¥*?,
where Ax is the number of elements and N + 1 is the degree of poly-
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(LN A o)

L RALLLL L

L LN LA

Y L RN L

FIG. 1. Matrix structure of orthogonal collocation on finite elements. Cross-hatched
area, equations arising from boundary conditions; hatched area, equations arising from
continuity of first derivatives at boundaries of elements; clear areas, equations arising
from residuals at interior collocation points of each element.

nomial within each element. The function and its first derivative at
the end point of each element converge even faster, as (Ax)?Y when
the collocation points are taken as Gaussian quadrature points [7],
as is the case when using orthogonal collocation. Douglas [8] has
shown for linear problems that the rate of convergence is Ax?¥ at
all the collocation points and Ax**N globally; that is, at points other
than collocation points. Thus we see that the slowest rate of con-
vergence is for the finite difference method, the next highest is for
the method of orthogonal collocation on finite elements, and the
fastest of all is for orthogonal collocation.

Another feature of interest is the time it takes to solve the re-
sulting equations. Here the advantages are reversed. The finite
difference method leads to tridiagonal matrices, which are quickly
inverted. The storage requirements are 3N — 2, where N is the
number of grid points. For orthogonal collocation on finite ele-
ments the block diagonal matrix illustrated in Fig. 1 is only slightly
more time-consuming to invert. Its storage requirements are
NE X (N + 2)2, The orthogonal collocation method leads to a dense
matrix, with nearly every value nonzero, which takes the longest
time to invert and needs N2 storage spaces. Of course, since fewer
collocation points are needed, the matrix need not be as big. Thus
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a priori comparisons of the methods are difficult. In addition, when
solving a problem whose solution is a function only of x?, the ortho-
gonal collocation method automatically requires one-half as many
collocation points to achieve the same degree of polynomial in the
region. If the solution does not have steep gradients, then ortho-
gonal collocation would be used because of its rapid convergence,
If steep gradients are expected, orthogonal collocation on finite
elements would be used, again because of its rapid convergence
compared to finite difference techniques. It seems that orthogonal
collocation on finite elements combines the rapid convergence of
the orthogonal collocation method with the relative efficiency of in-
verting the matrices. Detailed comparisons of computing time and
accuracy are given elsewhere [5].

OI. SULFUR DIOXIDE OXIDATION REACTOR
A. Introduction

In this chapter we apply the orthogonal collocation method to a
particular case—oxidation of SO, in a catalytic, packed bed reactor.
We discuss the importance of various heat and mass transfer phe-
nomena: radial and axial dispersion, and external and internal re-
sistances to heat and mass transfer. Emphasis is given to deciding
when these phenomena are important, and must be included in a
mathematical model. The first approximation of the orthogonal
collocation method is frequently useful for doing this. Finally, a
mathematical model is developed for the SO, reactor which includes
all the relevant phenomena, and the orthogonal collocation method
is applied to this model. The results confirm the importance of the
heat and mass transfer resistances.

The reactor in question is a pilot-plant-scale catalytic packed
bed reactor for the oxidation of sulfur dioxide to form sulfur tri-
oxide. Results of experimental measurements of temperature and
concentration distributions are given in Smith {9]. Reaction rate
data are given there as well as in an earlier article by Olson et al,
[10]. The reaction rate data was taken in a small reactor, about
three particle diameters long. The reactor was assumed to be differ-
ential, and conversion and temperature were taken as the average
of inlet and outlet values. Olson et al. [10] noticed that interphase
resistance was important at the flow rate in question; that is, the
particle temperatures differed from the gas stream temperature
near the particle. This resistance is called an external resistance
to heat transfer since the resistance arises due to the thermal bound-
ary layer developed external to the particle.
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The SO, reactor which is modeled here was about 50 particle
diameters long. The inlet gas stream was preheated to 400°C and
entered the packed bed, which was cooled by boiling glycol at 197°C.
The average conversion out of the reactor was measured, and the
outlet temperature was measured at various radial positions. The
reactor was operated several times, with each case having a differ-
ent length of packing, in order to obtain average concentration and
temperature profiles as a function of position down the bed.

A cylindrical packed bed reactor is by its very nature a hetero-
geneous system. The packing is random and irregular, the void
fraction is larger near the wall, and the temperature of the solid
and gas need not be the same at nearby positions, and can fluctuate
drastically from position to position. We employ here the usual
model [11, 12] which treats the reactor as if it were homogeneous,
and transport of heat by conduction through the solid and conduction
and dispersion through the fluid is modeled by an effective thermal
conductivity. Similarly, diffusion and dispersion of mass is included
by means of an effective diffusivity. Due to the spatially varying
void fraction, the axial velocity also varies with the radius in the
bed (see, e.g., Ref. 13 and references cited there). Throughout this
paper we employ a plug flow model by assuming the velocity is con-
stant across the cylinder cross section and the effective diffusivities
and thermal conductivities are constant. Since the models we use
have been discussed in detailed reviews [11, 12], we do not derive
the equations, but merely state them.

B. Importance of Radial Dispersion

The equations for concentration of SO, and gas temperature in a
reactor model including plug flow in the axial direction, radial dis-
persion, and chemical reaction are

81 03 2 fe35) - tem o
COT =kt g ToL + (~AHIRR(C,T) (35)
-0, =0 atr=o (36)
—kr%llr‘—: = h (T’ — T,"), % = 0, atr’ =r, (37

C =C,, T =T, atz’ =0 (38)
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For simplicity here we have written the reaction rate expression as

if it depended only on the gas concentration and temperature. We

also assume here that all physical properties are constant. The

generalizations are given below in specific cases where needed.
Next we nondimensionalize these equations using the definitions

z=2'/L,r=r'/1,, X =C/C,, T = T'/T,, and obtain in place of

Eq. (34) to Eq. (38):

X a2 [ X

= T aT(rF) — Da,fX,T) (39)
8T _a' 0 { aT

2z -1 or (r 5) + Da®RX,T) (40)
oT X _ _
- =0, == 0 atr=0 (41)

T . _. 3

—4-=Bi(T—T,), 2==0, atr=1 (42)
T=1, X=1, atz=0 (43)

The reaction rate term ® in Egs. (39) and (40) is a dimensionless
version of that appearing in Eqs. (34) and (35). The specific form is
left to each case treated below.

When radial dispersion is not important, we expect there to be
little variation of X and T in the radial direction. If we average
Egs. (39) and (40) over radius, using

(f) = flf(r)r dr/flr dr
[} 0

and applying the boundary conditions, we get

% = - Da.1<(R(XyT)> (44)
& - —%((T) — T,) + Day(®(X,T)) (45)

If the concentration and temperature do not change in the radial di-
rection, then we can use

(R(X,T) = REX)(T)) (46)
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together with the initial conditions
Xy =1, (T) =1, atz=0 47

Equations (44)-(47) are referred to as the lumped parameter model,
since only average quantities are calculated, in contrast with Eqgs.
(39)-(42), which permit a radial distribution of concentration and
temperature, and hence are called a distributed parameter model.
The lumped parameter model is easy to solve—hence its wide appli-
cability. We wish to examine the question of whether it is an appro-
priate simplification,

Orthogonal collocation has been applied to these equations by
numerous authors [13-18).* Equations (39) and (40) are similar to
Eq. (10) and the application of orthogonal collocation leads to equa-
tions similar to Eq. (11):

N+1

% =« 1By X, — Da®(X,,T,) j=1,..,N (48)
i=1
N +1

%’ = a'izB’iTl + DanI(R(XJ,T,) (49)
=1

Similarly the boundary conditions give Eq. (7) with Bi,, = 0 for the
X equation and Bi, = Bi, for T.

These equations can be integrated in many different ways. Ex-
plicit integration schemes, such as the improved Euler or Runge-
Kutta methods, can be used. Then the maximum Az is limited by
stability considerations, and a useful estimate is given by Ref. 2,
p. 118:

82 % /[
max N
M < 187|521, 8 23 By

By’ = By — Bj,NqAN-d,k/(Bi + Aml,tm)

*Stewart and Sérensen [ 18] consider the possibility of using different orthogonal
polynomials depending on the Biot number. This is done by using different collocation
points, the rest of the analysis being the same. The effect of this change is to sometimes
slightly speed convergence to the exact solution as N increases. The present author pre-
fers to use just one set of collocation points for all Bi, namely those with w = 1 in Ref. 2,
Chap. 5, in order to simplify the presentation and computer programs.
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where the value of k is determined by the integration method. The
value of k is 1, 2, and 2.8 for the Euler, modified Euler, and fourth
order Runge-Kutta methods, respectively. This estimate gives only
a “first guess” for a suitable Az since the stability of the calcula-
tions is also influenced by the reaction rate term, which is not in-
cluded in the estimate. Crank-Nicolson methods can also be used
by writing, e.g.,

k+1 k N+1

D= - 2of BT + T/ + Dag®(X,5T Y
Az i=1

Other modifications are also possible. The orthogonal collocation
method mentioned in Section II-D has also been found useful for in-
tegrating the equations [2, p. 134].

In the first approximation (N = 1, matrices from Table 1) Egs.
(48), (49), and (7) can be rearranged to give

& - —Da(x,T,) (50)

dT, _ _(6Biwa'

X ) (Tl - Tw) + Da’lll(R(qul) (51)

Bi, +3
Comparing these-equations to Eqs. (44) and (45), we find that they
are similar, and in fact the same provided we make the identification

a _ 2StL _ 6Bi,a’

<x> = x],y (T> = Tls _ro _.B-—31w + (52)
Now in the first approximation the average conversion is the conver-
sion at the collocation point provided the polynomial used is P,(r?)
=1 — 2r? and the collocation point is r, = 0.707, rather than 0.577;
i.e., the polynomials defined by w = 1 in Ref, 2, Chap. 5. In that
case the 6Bia’/(Bi + 3) is replaced by 8Bia’/(Bi + 4) [2, Chap. 5,

p. 13]. Notice that Eqs. (50) and (51) refer to the conversion and
temperature at a particular radius, when they vary parabolically
with r, whereas Eqs. (44) and (45) refer to a conversion and tem-
perature which are constant in r. The dimensional form of Eq. (52)
is

b

1 1 . -
TSRt using T = 0577 (53)
1 _ 1 R . _
T R tay  using T, =0.707 (54)
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The equivalence (54) has been shown before (see Finlayson [13] for
references). In fact, Crider and Foss [19] suggest better compari-
son with exact results by taking
1 R

+

1
T~ h, " 3.067k,

(55)

The relative importance of the wall resistance is evident by com-
paring the two terms in Eq. (53) or (55) with each other. The ratio
of 1/h, to 1/U or, equivalently, 1/Bi, + 1/3.067 gives a measure of
the fraction of the thermal resistance which occurs at the wall:

e.g., Bi =1, 75%; Bi = 10, 23%; Bi = 20, 13%. For small Biot num-
bers, most of the resistance occurs at the wall and only a one-di-
mensional treatment is necessary. This can be obtained from the
orthogonal collocation method using Eqs. (48) and (49) and N =1,
For large Biot numbers, radial dispersion becomes more important,
and the full two-dimensional treatment is necessary with a larger N.

Numerical computations to test the accuracy of the orthogonal
collocation method for various N have confirmed these guidelines.
For a case with a severe hot spot, Finlayson [13] found that only
N =1 or 2 was needed when Bi_ = 1, whereas for Bi, =20, N =5
was needed for a good approximation. McGreavy and Turner [20]
also found that a lumped parameter model was adequate for a case
which had Bi, = 2. Mears [21] has presented a criterion which says
the error in the average rate of reaction computed by a one-dimen-
sional model is less than 10% provided

Dagy E (1,4 Y<os 56
o RT,\ B, ' (56)

For the cases treated by Finlayson [13], with Bi,, = 1, the left-hand
side is 20, but for Bi,, = 20 it is 4.8. Thus in both cases radial dis-
persion is expected to be important. In fact, however, radial disper-
sion was relatively unimportant for Bi, = 1 when using the overall
heat transfer coefficient Eq. (53), and radial dispersion was least
important for that case (Bi,, = 1) which had the largest left-hand
side, in opposition to the criterion. Thus the criterion (56) is only

a guideline and computations indicate that the distributed parameter
model is important when the Biot number is large (say >3). The
case discussed in Section V leads to a different result: the Biot
number is large, but the heat of reaction is so small that the reac-
tor is almost isothermal, and a small N suffices. Thus if the Biot
number is small (~1) or the reactor is nearly isothermal, the lumped
parameter model is suitable, If selectivity among competing reac-
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tions is an important consideration, the temperature distribution is
important, and a large N (~3 to 5) would be needed for large Biot
number. Similar guidelines of needing a distributed parameter
model when the Biot number is large are given by Carberry and
White [22].

It is instructive to look at the Biot number as a function of Rey-
nolds number. For Reynolds numbers above 200, the Peclet number
is approximately constant at a value of 10. Smith [23] summarizes
the correlation for heat transfer coefficient as

h,d

Nu, =
u, k;

2 = 2.58(Re,Pr)°-% + 0.094Re 0-5Pr®-4,  Re,> 40
(57)

We rearrange these equations to give the Biot number

Pe
PrRe

r,
? = Nu,z*
P

Using the correlation (57), Pr = 0.7 (common for gases), Pe = 10
gives

Bi, = 50;(32.71%,,-2/a +1.16Re,%) (58)

The Biot number decreases as Reynolds number is increased, and
the values listed in Table 2 are all small. In an industrial situation
the packing diameter is chosen as large as possible in order to min-
imize pressure drop through the reactor; the tube diameter is chosen

TABLE 2

Biot Number
Dependence on
Reynolds number

Re Bi?

200 41
500 2.6
1000 1.8
2000 14
5000 1.0

2Calculated from
Eq. (58) with 1'0/dp =3.
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small in order to minimize temperature variations across the cross
section of the bed (which might have adverse consequences with re-
gard to selectivity), and a high flow rate is used by economic neces-
sity. All of these influences tend to decrease the Biot number, so
that in many practical situations the lumped parameter model is ade-
quate. The important parameter deciding that question is the Biot
number.

For the SO, reactor, we have r, = 0.0262 m, d, = 0.00318 m,
(equivalent diameter of cylindrical packing), Re = 46, and the vari-
ous correlations for k, and h,, [11] give Biot numbers ranging from
3.1 to 13. These are high enough that we do not expect the lumped
parameter model to suffice, and the detailed calculations shown
below demonstrate this. This reactor is a laboratory reactor,
operated at a relatively low flow rate, and radial dispersion is im-
portant,

C. Importance of Axial Dispersion

To examine the importance of axial dispersion, we study a model
involving axial dispersion, but no radial dispersion, with constant
physical properties: )

02C G oC

DLa—Z,g — B-'a?; — pgR(C,T) =0 (59)

2m’ ~ ’
koL _ 862 _ 2V T ,) 4 (—AHR)PsR(C,TY) = 0
0z >~ oz T,

iC _G T~ ,
DLE—Z—’ = 'E(C - Co), kLa—Z' = CFG(T' -_— To), atz’ =0
ac aT’ .

7 =% -0 atz=L

The reaction rate term, R, here has the dimensions of (kg)(mole)/
(sec)(kg)(cat). Orthogonal collocation is applied to these equations
as illustrated in Eqs. (13)-(18), [2, p. 126].

If the system is isothermal, that is U =0, —AHy =0, and T, = T,
and first ofder, then pgR = kC, where k has dimensions of reciprocal
time. Under these conditions a criterion for the importance of axial
dispersion is [24-26]

C _ pk\? d L
6:‘“('6)?&.,—,, (60)

where C is the outlet concentration from a reactor of length L with
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axial dispersion included, and C, is the concentration at length from
a reactor keeping only the plug flow term, ignoring axial dispersion
(setting Dy, = k;, = 0). As a first approximation we apply Eq. (60) to
the SO, reactor using a pseudofirst-order rate constant evaluated
at the inlet conditions, k = pgR, /C, = 4.45 X 10%/hr, at T = 400°C.
Pertinent quantities are listed in Table 3. The results give C/C,

= 1.04, so that axial dispersion by this estimate, leads to a small

effect.
TABLE 3

Data for SO, Reactor

L = 0.145 m;r, = 0.0262 m;dj, = 0.00318 m; ¢ ~ 0.43

pp = 1030 (kg)(cat)/m?; G = 1710 kg/(m?)(hr); —AH = 98,000 kJ/(kg)(mole)

Cp = 1.00 kd/(kg)}(°C); p/C, = 459 kg/(kg}(mole); a, = 1.05 m?/(kg){cat)

L/dp = 45.6; ro/dp = 8.24; Re = 46; Biy, = 10

Pey, = 2.9;Pey , = 0.95;Pey, , = 9.6;Pey, , = 2

a = 0.074; o' =0.22;y=0.010;v' = 0.0218

Daj = 46.4 (kg)(cat)(hr)/(kg)(mole); o = 0.730 (kg)(mole)/(kg)(cat)(hr)

Dapy = 47.1 (kg)(cat)(hr}(°K)/(kg)(mole); ¢’ = 0.00853 (kg)(mole)/(kg)(cat)(hr)(°K)
oX—X) =0 (T;=T) = R(T, X)

R(T, X;) = {X;[1—-0.167(21 —X,)] " —2.2(1 —Xs)/Keq}/[k, +k, (1 —X;)]?

In Ko = —11.02 + 11570/T;
Ink, = —14.96 + 11070/T, | T, in°K
Ink, = —1.331 + 2331/T;

For reactor used to measure reaction rate
a' =0.0209; Biy, = 352, ¢’ = 0.344
&, v, 0, o', Daj, Dayy same as above

We next apply the criterion developed by Young and Finlayson [27]
for nonisothermal reactors with heating or cooling at the walls, The
reason this criterion is different from Eq. (60) is that in an isother-
mal or adiabatic reactor the concentration always approaches the
equilibrium conversion as the length is increased. This is true
whether or not axial dispersion is included, so that the effect of
axial dispersion is expected to be negligible for long reactors (often
the criterion is stated as L/d, > 50 [28, 29]). In a reactor with heat-
ing or cooling at the walls, however, the cooling can be so great as
to quench the reaction, so that the equilibrium conversion is not
reached, no matter how long the reactor is. In this case the tem-
perature distribution is all important, and this is affected by axial
dispersion. Young and Finlayson [27] developed a criterion which
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says that axial dispersion is important at the inlet of the reactor if
the following inequalities are violated:

dp (_ AHR)pBR(CmTo) <« 1

T - T, = = 61
C - Cp - ) dp ppBR(CmTo) «1 (62)
Co Pe, ., GC,

If axial dispersion is important, at the inlet T*(0) may be higher than
T,, thus increasing the reaction rate and affecting the temperature
distribution throughout the reactor. If the conversion approaches
the equilibrium conversion anyway, then axial dispersion is prob-
ably not important. If the temperature reaches a peak and then de-
creases with length, and the equilibrium conversion is not reached,
then axial dispersion should be included if either inequality (61) or
(62) is violated. The temperature inequality is the most crucial one
in practice. Neither inequality speaks to the question of the im-
portance of axial dispersion at a hot spot interior to the bed, where
large axial gradients may develop (see Ref. 27). For the SO, reac-
tor using R = 0.0510 (kg)(mole)/(kg)(cat)(hr) at 400°C and zero con-
version, application of Eqs. (61) and (62) gives (C — C,)/C, = 0.022
and T' — T’ = 9.6°C. The later value is large enough to cause a
60% increase in the reaction rate at the inlet, so axial dispersion
is important there. Calculations below show that the equilibrium
conversion is not reached, so that axial dispersion must be included
in the model.

D. Ifnportance of External Resistance

As a gas stream flows past a catalyst pellet, the reactants must
diffuse through a concentration boundary layer near the surface of
the catalyst, and energy must also diffuse through a thermal bound-
ary layer. Consequently, the concentration and temperature on the
surface of the catalyst are not the same as their bulk stream values
due to these resistances to heat and mass transfer. The usual pro-
cedure for accounting for this phenomena mathematically is to intro-
duce heat and mass transfer coefficients, By making energy and
mass balances around catalyst particles, we are led to the equations

kpa{C — C,) = psR(C,, T, (63)
h,a,(T," — T’) = (—AHR)pR(C,,T,’) (64)

where psR(C,,T,’) is the rate of reaction per unit volume of the bed,
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evaluated at the solid concentration and temperature, and a, is the
surface area of catalyst per volume of the bed.

We ask ourselves: Are these external resistances important?
Equations (63) and (64) can be solved for C, and T/, given C and T’,
the bulk stream values, For most cases a simple iterative calcula-
tion is feasible: substitute C and T’ on the right-hand side, solve
Egs. (63) and (64) for C, and T,/, use these values on the right-hand
side, and continue until the desired accuracy is reached. The impor-
tance of including the external resistances can be assessed by com-
puting an effectiveness factor

R(C,,T,’)

“RET ‘65’

This measures the fractional reduction (or increase) of the reaction
rate due to external resistance, Since the solution to Egs. (63) and
(64) depends on the bulk stream values, the effectiveness factor will,
too. Thus it will vary from position to position in the reactor. We
thus calculate 7 for a range of possible concentrations and tempera-
tures. If the values depart from 1 significantly (say above 1.1 or
below 0.9), then external resistances should be included in the model,
Mears [21] gives the criterion that the rate neglecting external heat
transfer resistances is within 10% of the correct rate provided

(=AHg)pgRd, E

T;r;“” R, <0.15 (66)
or

B¢?

Bl R <o 15

We illustrate two methods of including external resistances in a
reactor model including radial dispersion. In place of Eqs. (34) and
(35), we use Eqs. (63) and (64) to rewrite the equations in the form

G oC 19 oC

o5 = Do gt 5r) — K€ = € (67)
%G L2 (T ;o

C H kr;'l' ﬁ' r’ -6?7) + hpa.‘.(Ts - T ) (68)

At every (r’,2’') position in the bed where Eqs. (67) and (68) are
applied, we must solve Egs. (63) and (64) since they determine C,
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and T,’. Another method of introducing the interphase resistances
is to use the effectiveness factor. In place of Egs. (67) and (68) we
get

GaC _ 10 _,oC '

537 = Dy T — PeRCTY) (69)
~ ~ 0T’ 13 aT’

Coo - ko gh ra + 1(—AHg)ORR(C,T") (70)

The reaction rate term is evaluated at the bulk stream values, At
first glance this seems to obviate the need to solve Eqs. (63)-(69),
but this must be done to find the effectiveness factor by Eq. (65).

Another feature of interest is the maximum temperature which
can be reached in the catalyst, assuming only interphase resistances.
Equation (63) can be multiplied by (—AH;), subtracted from Eq. (64),
and the result rearranged to give

T, + (—_'Ahl*l*‘)kmcs =T +

14 P

(—AHp)k,,
— Cc

Now for given bulk stream values, C and T’, the minimum concen-
tration in the catalyst is zero. Thus the maximum temperature rise
is

AT ., = (—AhH—R)kmc M)
P

This value should also be calculated to assess the importance of ex-
ternal resistances, since it gives an upper bound on T/, although
this temperature may not be reached. The actual T, calculated
from Eqgs. (83) and (64) may be considerably lower so that the cal-
culation of 7 gives the best insight as to the importance of inter-
phase resistances.

In order to solve Egs. (63) and (64) or to use Eq. (71), we must
have the heat and mass transfer coefficients, h, and k,. These are
determined from correlations for Nusselt or Sherwood numbers,

hd Kod,
Nu=—2%  gh="unb 7
n 5 (72)

which are given in terms of the j-factors, defined as

jn = NuRe™!Pr-'/3,  j, = ShRe-!Sc-1/3



94 B. A. FINLAYSON

Solving for k., /h, and substituting into Eq. (71) gives

AT, = 888 (] ( )(P‘)”sc
an Sc

Since jy = 0.7j, for a range of Reynolds numbers (9, p. 364], an
Pr = Sc for gaseous systems [9, p. 364), this gives

AT o’ = 0.7(— AHR)C/(oC,) (73)

or a maximum temperature rise of 70% of the adiabatic temperature
rise,

For the SO, reactor under the stated conditions the adiabatic tem-
perature rise is 214°C, so that Eq. (73) gives AT ..’ = 149°C, which
is a significant temperature rise. However, the actual temperature
rise is given by Eqs. (63) and (64) which are [27]:

X — X, =1.37R, Ty - T' =117R

where R is given in units of (kg)(mole)/(kg)(cat)(hr)(°K). For T’

= 673°K, X = 1.0 (at the inlet) successive application of the suggested
iteration gives X, = 0.935 and T, — T’ = 5.6°C. Thus the catalyst
would be about 6°C hotter in a place in the reactor where the gas
outside was at 400°C and at zero conversion. The effectiveness
factor turns out to be » = 0.94, which is close enough to 1 that it is
questionable whether external resistances should be included. How-
ever, downstream we find below that the gas temperature rises to
500°C when the conversion is 30%. Under these conditions T,” — T’
=9.7°K, X — X, =0.11, and 5 = 0.57. Also, the left-hand side of

Eq. (66) is 4.0. Thus the external resistance is important here and
must be included in the model.

E. Importance of Internal Resistance

After the reactants reach the catalyst particle surface they must
diffuse through the pores before reacting. If the rate of diffusion is
slow enough, the concentration will be lower near the center than at
the boundary of the catalyst. In this case there is also a heat and
mass transfer resistance due to intraparticle transport, which is
sometimes called an internal resistance. For the SO, reactor under
consideration, Smith [9, p. 532] indicates the ca.talyst has only a sur-
face coating of platinum so that no internal resistances are possible.
We include the phenomenon here, however, for completeness and
indicate how to assess the importance of it.
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The equations governing heat and mass transfer in a catalyst
particle (assumed here to be spherical) are

1 d[,dC,\ _ '
D, = ag(s —ds—) = p,R(C,,T,') (74)
1.d(.dT _ __ !
ke 82 ds (S dss) = —( AHR)psR(Cs!Ts ) (75)
aC, _ dT, _ -
=0 = =0 ats=0 (76)
dcs s ’ -
—D, 5=t = kalC, — C(r',2")],  ats=d,/2 (77)
- e% = h[Ty — T'(r',27)], ats =d,/2 (78)

We have included the external resistance by means of the boundary
conditions (77) and (78). If the Biot numbers are large, Bi, = k,d,/
(2D,) or Bi = h,d,/(2k,), then the boundary conditions become

Cq(d,/2) = C(r',2"), T,/(d,/2) = T'(r’,2') (79)

We must solve Egs. (74)-(78) for each reactor position (r’,z’), since
C and T’ depend on position in the reactor.

An effectiveness factor can be defined to give the average reac-
tion rate:

3/ RIC,(w), T, (W) du
n=_2 (80)
RIC(r',2),T" (", 2)]

where u = 5/(d,/2). For long cylindrical catalyst pellets the 3 is
changed to 2 and u® du becomes u du, For plane geometry the cor-
responding numbers and 1 and du. Notice that this effectiveness
factor includes the effect of both external and intraparticle resis-
tance. If it is desirable to separate out those effects, we can define
an internal and external effectiveness factor:

3 RIC,W. T @] 0w RIC.(4,/2),T,/(d,/2)]
’ Neg =
R[C,(d,/2),T,(d,/2)] F " RIC(r,2),T' (', 2)]
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Clearly n = 3yng. If 7, =1 and C, and T,/ are constants inside the
catalyst, then 7 = 7 is the same effectiveness factor defined in
Eq. (65).

The overall effectiveness factor (80) is used in the model. The
same equations (69) and (70) are used for the reactor, but the 7 is
determined by Eq. (80) after solution of Eqs. (74)-(78) for each
(r’,z’). If there is only a single reaction taking place, the problem
Eqs. (74)-(78) can be solved for arbitrary C,T’, and the solution
represented by giving 7 as an analytic {or graphical) function of the
parameters (including C and T'). Then the use of 7 in the reactor
model Egs. (69) and (70) involves simply an evaluation of this func-
tion for the C and T’ at each location. Evaluating this function is
very much faster than solving the boundary value problem, so that
this should be done when possible, If there are multiple reactions
and the reactants interact, it becomes more difficult to derive such
an analytic representation of 7 for each reaction, since the 7 for
one reaction depends on the course of the other reaction as well.
Then the boundary value problem, expanded for multiple reactions,
must be solved, as illustrated below for the NO reduction reactor,
The orthogonal collocation method is very useful in reducing the
computation time to 2 minimum (compared to finite difference
methods), and this feature is especially welcome since the problem
must be solved perhaps thousands of times to model the entire re-
actor.

It is convenient to nondimensionalize Eqs. (74)-(78):

ViX, = ¢°R (81)
V2T, = —B¢*R (82)
dX,/du=0, dT,/du=0, atu=0 (83)
—dX,/du = Bi, (X, - X), atu=1 (84)
—dT, /du = Bi(T, — T), atu=1 (85)

where X, = C,/C, and T, = T,/ /T,. The Biot numbers are defined in
terms of the effective diffusivity and thermal conductivity of the
particle, and the particle radius, They are different from the Nus-
selt and Sherwood numbers which are defined in terms of the fluid
diffusivity and thermal conductivity, and the particle diameter.

1. Effect of Temperature

These equations can be combined [30; 14, p. 234; 2, p. 325] to
Ty (u) + X (u) = K, = T, (1) + gX,(1) (86)



ORTHOGONAL COLLOCATION 97

K, =T + 86X + X, (1)[1 — 5] (87)
& = Bi, /Bi

These equations can be used to give T, in the concentration equation,
so that only a single equation need be solved rather than two coupled
equations.

When 8 > 0 (exothermic reaction) the minimum X, (= 0) corre-
sponds to the maximum Tg: T, ., = K,. Since K, is a function of the
solution X,(1), however, this is not a useful estimate, When 6 > 1,
which is the usual case [14, p. 253; 31], then K, is a maximum when
X,(1) =0, Thus

Tg,,,m..x =T + B6X
In dimensional notation this is

, _ Big (—AHg)D

A e

If the boundary conditions are Eq. (79), then these carry over with
& =1, If we have the full boundary conditions (84) and (85), then
Eq. (88) simplifies to Eq. (71). Notice also that from Eq. (86) we
can derive

Ts(o) - Ts(l) = ﬁ[xs(l) - Xs(o)]

Since the maximum value of X, (1) — X,(0) is X, and usually 8 is
small, the maximum temperature rise inside the particle is X or
B when X = 1. The predominate temperature rise occurs outside
the particle, as T (1) — T.

These results can be applied to the SO, reactor. Using D, = 0,014
m?/hr, k, = 1.0 kJ/(m)(hr)(°K),* and T, = 673°K, we get 8 = 0.0024.
If the Reynolds number is high enough that there are no external
resistances and § = 1, then the adiabatic temperature rise is
AT, = 1.6°K. Clearly the temperature would be almost constant,
For the laboratory reactor, however, Bi = 1.2, Bi, = 67, and the
temperature rise for this situation is 86°K. Thus the temperature
rise across the thermal boundary layer must be accounted for.

2. Effect of Biot Number

Let us next see how the type of solution changes for large versus
small Biot numbers. Consider the problem with a zeroth order and
isothermal reaction rate, Eqs. (81)-(84) with ¢*® = ¢2, 8 =0, and

*The estimation of Dg and ke is an art in itself. See Ref. 9, Chap. 11.
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X = 1. Apply orthogonal collocation, N =1, as in Eq. (6) to obtain
B, X, + B X, = ¢?
—(AyX, + ApX,) = Bi X, — Bi,

where X, = X (u,), X, = X,(u,) = X,(1). Rearranging these, using
- B, =B, >0, —A,, = A,, >0, and solving for X, and X, gives

A, 2
X,=1— 2
2 Bi,B,,

X =X, - ¢2/Bm

Now as the Bi, — < we get X, =1 and X, =1 — 1/B,,. Thus for large
Bi, the boundary concentration equals the external concentration
(here 1). For smaller Bi_ there is a difference between the values
of the concentration of the bulk gas stream and the boundary of the
catalyst (X,). This difference is increased as the Bi,, is decreased.
The concentration change across the boundary, 1 — X, is compared
to the total concentration change 1 — X (0) in Fig. 2 as a function

of Bi . The function plotted there,

1-X, ) 1
T—x,0 - B = 15,7 e

is the same for all three geometries using orthogonal collocation.
Furthermore both the exact and orthogonal collocation solutions to
the problem are gquadratic polynomial in u, provided X, > 0 every-
where, so the orthogonal collocation solution is exact for X,(0) = 0,
that is for ¢2 < aBi, /(1 + Bi,/2).

For large Bi,, as often happens for mass transfer, the boundary
concentration is close to 1.0, and the boundary condition might as
well be taken as X, = 1.0. The major change in concentration occurs
inside the catalyst and a distributed parameter solution is necessary.
For small Bi_, there is a significant change in concentration across
the phase boundary so that the external resistance is important and
must be included.

When Bi is small, as often happens for heat transfer, it is con-
venient to lump the thermal resistance by using a one-term colloca-
tion solution for temperature. This corresponds to using a heat
transfer coefficient defined by Eq. (53) for cylindrical particles and

1 1 a/2
—_— e Pl
U~ T, "ok, (90)
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FIG. 2. Function defined by Eq. (89).

with b = 2.5, 3.0, and 3.5 for planar, cylindrical, and spherical
geometry, respectively. The andlysis is the same as applied to ob-
tain Eq. (51).

3. Effect of Thiele Modulus

We also want to test for the importance of internal diffusion. We
do that here using the orthogonal collocation method, N =1, on a
problem with no external resistance, Egs. (81)-(85) with R = X,,
X,=1latu=1, 8=0, for a spherical geometry. Applying ortho-
gonal collocation for spherical geometry and using —B,, = B,
= 10.5, we get

_ 105
X, = 10.5 + ¢2 (91)
The effectiveness factor is
7 =___W1X1 + W, 0.7X, + 0.3
W, + W,

If we define the absence of intraparticle resistances as when 7 = 0.9,
then we need X, > 0.857. Use of Eq. (91) says that 9 = 0.9 provided
¢2 < 1.75 or ¢ < 1.3. Since a one-term collocation solution is a
good approximation for 1 ~ 0.9 (see below), this is expected to be a
good estimate. For cylindrical and planar geometries we obtain

¢ < 0.96 and 0.58, respectively.
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F. Effectiveness Factor Calculation

When internal resistances are important, the orthogonal colloca-
tion method applied to Eqs. (81)-(85) gives

N+1
lE BjiXs =¢2(R(xshTsl)’ i=1,..,N (92)
=1
N+1
2 By Ty =—B0°R (X, Toy) (93)
=1
N+1 .
- 1Z->1 ANu’ixsi = Blm(xs,rhl -X) (94)
N+1
- ‘Z_i AN-tl,lTsi = Bi(Ts,Nﬂ. - T) (95)
N+1
121 Wia(xxinsi)
" =¥a1 (96)
2 WR(X,T)
i=1

We emphasize that many species and many reactions can be treated,
as is done in Section V, but here we use only a single species for
simplicity in presentation. To solve these equations we first solve
for X, n, and T, y,, from Eqgs. (94) and (95) and substitute into

Egs. (92) and (93), obtaining, for example,

™M=

B 'Xq = ¢*®(X,;,T,y) — B, i=1,..,N (97

i

1

B! , NﬂANﬂ,l

By’ = By — B = By xBinX/(Ay., o + Bin)

ANol,Nol + Bim’
(98)
Several methods to solve these equations have been found to be
feasible. Successive substitution is possible for small ¢2, A guess
for {Xs,,TB,} is substituted into the right-hand side of Eq. (97), and
new values are calculated on the left-hand side. These values are
then used on the right-hand side and the process is repeated until
the {X,,,T,,} quit changing from one iteration to the next to within
some desired tolerance. For large ¢2? such a procedure diverges,
and the limits on ¢2 for success depend on R and N. For example,
for N =1, Bi_, —~ =, and first-order, isothermal irreversible reac-
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tion, the successive substitution method converges to the solution
provided ¢2/B,, < 1. For a spherical catalyst pellet this is ¢ < 10.5.
Furthermore, the rate of convergence is very slow for ¢2 close to
10.5. Thus the usable range of ¢* is precisely in the region (small ¢?)
where the calculation need not be done anyway. Thus we need a better
method, applicable for large ¢2.

The Newton-Raphson method has been found suitable for a wide
range of ¢? including nonisothermal problems with large concentra-
tion gradients. In this method the equations are linearized about the
k-th iteration

N
Fy E‘E B,'X, — #*R(X,;,T,) — B
=1

N
F,* = 1Z}1B“,X81M — ¥R iy + Ry (Xt — X))
+ (R-l-lk,j(':[‘ajl“1 - Tsik) - B

The notation Ik, ; means that the term is evaluated for X /X T,,*, Simi-
lar equations are written for the T, equations. We desire F =,
so set this to be true, rearrange the equations, and solve for X,
T;**!}. This process is repeated until numerical convergence is ob-
tained. If the reaction rate expression is too complicated to differ-
entiate analytically, as is often the case for realistic systems, then
the derivatives may be obtained numerically. Since the numerical
derivatives do not affect the solution, just the numerical process to
obtain it, slight errors in evaluating the derivatives in this way are
usually inconsequential. If the problem has more than one solution,
the solution obtained depends on the initial guess.

The Newton-Raphson method is useful as a general method. The
reaction rate expression may have a form that admits other types
of iterations as well. For a reaction which is nearly first order,
and is isothermal, we can define a first-order reaction rate by

(R(xshTss) = k(xsi:Tsi)Xsi
Then the iteration

N
lZ-/\lBi l'x!kﬂ = ¢2k(xsjk’Tsjk)Xsikﬂ - B

converges provided k does not change very much, Another case would
be when the reaction rate is almost constant. Then the successive
substitution method converges. Both of these iterations are found
useful in the NO reduction reactor treated in Section V.
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If the solution is expected to have a profile which has a very steep
boundary layer near u = 1 and takes the equilibrium value elsewhere,
then orthogonal collocation on finite elements would be the preferred
method of solution. Then the equations can be rearranged to have
¢2Au?R on the right-hand side, and a successive substitution method
would converge for arbitrary right-hand side provided Au, is small
enough [5].

It often happens that Bi,, is large and Bi is small [31]. Then we
can neglect the external mass transfer resistance and the internal
heat transfer resistance. We then use a lumped parameter model
for the energy equation, integrating it over the catalyst. This per-
mits the catalyst temperature to be different from the bulk gas
temperature, although the temperature is uniform within the cata-
lyst. Such approximations simplify the problem, and the orthogonal
collocation method can be applied to the simplified problem as in
Egs. (92)-(96).

1. One-Term Approximations, and Asymptotic Solutions

The application of orthogonal collocation discussed above is use-
ful if one desires very accurate results. However, results of en-
gineering accuracy can be achieved very easily using one of two
methods. Both methods use a first approximation, N = 1, for small
¢. In the first method, for large ¢ the exact asymptotic results are
used. In the second method, due to Paterson and Cresswell [30], a
revised orthogonal collocation method is used. The first method
is illustrated by application to an isothermal, first-order, irrevers-
ible reaction, Egs. (81)-(84), with ® = X,, 8 = 0, in planar geometry.
A one-term collocation method, using the fact that —B,, = B, and
—A, =A,, gives

A22 - ¢2X1 Bim
( T An+ Bim)X‘ =~ B, ' A,+Bi, (99)
X, = A__.__szl + Bin (100)
2s + Bip
- WX, + WX,
W, + W,

For a plane geometry A,, = 2.5, B, = 2,5, W, = 0.8333, and W, =
0.1667. Figure 3 plots 7 vs ¢ for the one-term approximation when
Bi,, = 10, The solid line gives the exact solution, and it is clear that
the one-term approximation, given by the dotted line, is not valid
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FIG. 3. Effectiveness factor. f(C)=C, Bi, =10,a=1.

when ¢ > 2 or 7 < 0.4, This is because for large ¢ the concentration
profile can no longer be well represented by the form a + bu2, since
the concentration is nearly zero over the inner portion of the cata-
lyst. For large ¢ we use a larger N or the exact asymptotic solution.

Results for large ¢ have been derived by Petersen [32, p. 70].
For the problem (81)-(85) under conditions of large Bi, and Bi, and
X =1, T =1, the boundary conditions are

X () =1, T,(1) =1

The effectiveness factor is given by

= Q ! 1/2 5 _ V¢
n= (5 [fo R(y)/®(1) dY] s ¢ = Wz_

where gE is introduced to account for different geometries, and v,
and A, are the particle volume and external surface area, respec-
tively. The reaction rate depends only on the concentration, X,
and we use T, + 8X, = 1 + B to convert a temperature dependence
into a concentration dependence. For the first-order isothermal
reaction with large Bi,, this gives = 1/4.

When the modified Biot number is finite, and a reversible reac-
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tion is allowed, a similar perturbation analysis gives

n = {?— [f G )/RX) dy] 12

Xeq

where X, (1) is determined from

Xg

Bi,[X,(1) — X] == V2¢ [fx “R)/RK) dy] e

eq

and X, is the value of the concentration at equilibrium and at the
center of the catalyst. Now we use Eq. (86) to determine the tem-
perature in terms of the concentration.

For example, for a second-order isothermal reaction in a sphere
these equations reduce to

=% %—[Xs(l)]a’z (101)
Bi[X,(1) — 1] = -\Eqs[xsuﬂw (102)

Now the Thiele modulus can be increased in two ways. Since the re-
action rate, and hence ¢, is much more dependent on temperature
than is the mass transfer coefficient as the temperature is increased,
then ¢ — = at constant Bi,. If the radius of the catalyst is increased
while keeping the temperature fixed, then ¢ — « at constant ¢/Bi,,
since both ¢ and Bi,, are proportional to the radius. Thus, roughly,
changing ¢ at constant Bi,, corresponds to changing the temperature,
while changing ¢ at constant ¢/Bi,, corresponds to changing the
radius of the catalyst pellet.

Applying these ideas to Eqs. (101) and (102), for constant Bi,, we
find that X (1) — 0 as

é (2 s /2
= E; '3_[xs(1)] /

-
1l

and

[t}

N = 3Bi, /¢?, Bi, = constant, ¢ —~

If both ¢ and Bi, get large together, so that ¢/Bi,, is constant, then
X,(1) is constant, too, and is solved from Eq. (102). Then Eq. (101)
shows that



ORTHOGONAL COLLOCCATION 105

n =%; —l%— = constant, ¢, Bi,, — =
m

where the numerical value of A depends on the solution for X (1).
Combination of the asymptotic results for large ¢ and the ortho-
gonal collocation results for small ¢ then gives an easy method to
calculate 7 vs ¢ for the whole range of ¢. This procedure is suit-
able, provided the 7 vs ¢ curve has the general shape shown on
Fig. 3. For cases when 1 > 1, the second method must be used.

2. One-Term Approximations Using Finite Elements

The second method is an adaptation of that presented by Paterson
and Cresswell [30]. This approach should be used whenever 7 > 1.
For small ¢ we again use orthogonal collocation with N = 1, For
large ¢ we recognize that the concentration drops to its equilibrium
value near the surface of the pellet, and retains that value from there
to the center. Thus we introduce the concept of an effective reaction
zone, defined by u =b. For 0 < u < b the concentration is defined
as the equilibrium value. Forb<u <1 we approximate the con-
centration as a second degree polynomial in u using orthogonal
collocation. Thus we are using orthogonal collocation on two ele-
ments, with the solution constant in one element.

Consider the problem Eqgs. (81)-(85) with X =1, T = 1. This can
be reduced to a single equation using Eq. (86). We drop the sub-
script s for convenience. At the reaction zone we want

XE) =Koy b) =0

in order that the reaction cease and no mass transfer take place into
the unreacting core. The domain is transformed using s = (u — b)/
(1 — b) so that s goes from 0 to 1. The differential equations and
boundary conditions are then

1 dX a—1 1 ax
T-vrds® "b+si -0 A =0 as - P’RET)

1 dx .
—(I'Tb)'(E=Blm(X—l), ats =1
— dx— -—
X=X FS--0, ats =0

eq?

The point s = 0 is the edge of the reaction zone.
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We apply orthogonal collocation to this problem. While the prob-
lem was symmetric in u (the solution was a function of u? only, not
u), it is no longer symmetric in s. Thus we must use the matrices
and roots from the bottom of Table 1.* We call X, = X(0), X, =
X(1/2), X, = X(1), and set X, = X.,. We thus have three unknowns:
X,, X,, and b. We assume that X, is known, and if the reaction is
reversible and nonisothermal, the calculations are more compli-
cated. Three equations are obtained by collocation at s = 1/2, the
boundary condition at s = 1, and the zero flux condition at s = 0:

1 a—1 1
(1 — b)? [B21Xeq + BpX, + B23x3] + b+l — b) (I — b) [A21Xeq

+ ApX, + A23X3] =9 26{[X2,X3]
1 I3
“1—-0 [AyXe + AX, + A X,] = Biy[X, — X]
ApXeg + AKX, + AX, =0

These can be rearranged to give (using the numerical values for By,
and A;,):

X, = (X, + 3X,)/4 (103)
(1 = b)Bi X + 2X,,
R (- b)Bi,, (104)
1 a—1
2 [(1 — b)z + 1 —_ bz] (xs - xeq) = (,’)Z(R(XZ,XS) (105)
The effectiveness factor is
1 1 1
7 =301 —b}{p*/ ® ds + 2b(1 — b) [ ®s ds + (1 — b)*[ ®s? ds},
0 0 0 (106)
sphere
n=2(1—blbf ® ds + (1 —b)[ @s ds},  cylinder (107)
] 1]
n=(1—=0b)f ® ds, slab (108)
o

*Paterson and Cresswell [ 30] use symmetric polynomials in s. For spheres they
achieve better comparison to exact solutions, without the discontinuities apparent in
Figs. 4 and 6. However, the symmetry cannot be justified (in s) for cylinders and
spheres. The problem does not arise for planar geometry because of the absence of the
1 dX

T du form.
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1
Jf(s) ds =4(f, + 1) + 21,
a

and the quadrature formula is used to evaluate the integrals, Equa-
tions (103)-(105) can be used as follows. If Bi,, is given and it is
desired to determine n as a function of ¢, then a value of b is
chosen between 0 and 1, X, and X, are calculated from Eqgs. (103)
and (104) and then ¢ is calculated from Eq. (105). This procedure
is repeated for various b, A value of b close to 1 correspond to
large ¢. A value of b =0 gives a ¢ which is not zero. For ¢
smaller than this the orthogonal collocation method, N =1, as illus-
trated in Egs. (99) and (100), is used. The value b = 0 corresponds
to the case when the center concentration is at equilibrium and the
reaction zone fills the whole pellet. The regular orthogonal colloca-
tion method corresponds to X(u = 0) > 0. If Bi,, is not constant, but
changes with ¢ by ¢/Bi,, = constant, then Eqs. (103)-(105) must be
solved. The author has found a Newton-Raphson method, using Bi,
as the independent variable, works well for this case.

This procedure is applied to the first-order reaction giving the
results shown by + in Fig. 3. Clearly the two element orthogonal
collocation solution provides an adequate approximation to the
exact 7 vs ¢ curve for the range of 7 shown.

For a nonisothermal, first-order irreversible reaction we take
Egs. (81)-(85) with R = X, exp[y — y/T,]. For the parameter values
X=1,T=1,y=20, 8=0.02, Bi = 5, Bi, = 250, and & = 50 we get
the curve shown in Fig. 4.

The solution using orthogonal collocation on finite elements used
20 elements, spaced uniformly for ¢ < 9 and bunched near u = 1 for
¢ > 9. The integrated mean square residual was calculated and the
only solutions accepted had values less than 1, which other calcula-
tions [5] indicate would make the error in 7 less than 0.01%. The
curve with Bi,, constant corresponds to changing ¢ by changing the
temperature at constant particle size. The effectiveness factor falls
initially due to internal mass transfer limitations and then rises
abruptly due to external heat transfer limitations. The curve with
¢/Bi,, constant corresponds to changing the radius at constant tem-
perature. The two-element solution gives a fair approximation of
the exact curve. As mentioned above, use of symmetric polynomials
(which changes the collocation point in the element) gives better re-
sults but is mathematically indefensible.

3. High Order Approximations

The accuracy of the orthogonal collocation solution can also be
improved by increasing the number of collocation points., For the
same test problem, treated in Fig. 3, we show the accuracy in n as
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FIG. 4. Effectiveness factor for nonisothermal, first-order, irreversible reaction in a
sphere. § =0.02, v = 20, ( ) Orthogonal collocation finite element solution, (- -)
one-term orthogonal collocation, or two-element solution. A six-term orthogonal collo-
cation solution gave accuracy of 10™ % for ¢ < 5.

a function of N in Fig. 5. We note several features: all the graphs
are straight lines, indicating the error is proportional to (1/N)N
with different b. The error is greater for low 7, which corresponds
to situations with concentration boundary layers near the edge of the
catalyst. For this problem, whenever n > 0.05, 1% accuracy is
achieved with N2 3.

The last conclusion in particular does not generalize to noniso-
thermal problems. Due to the very steep concentration gradient for
large ¢ [for ¢ = 14, X = 0 at u = 0.997 and rises to X ~ 0.16 atu =
1.0] only a finite element (or finite difference) type of solution is
feasible.

Sgrensen et al. [33] have applied a two-dimensional orthogonal
collocation to diffusion and reaction in a cylindrical catalyst of
finite length. The specific equations are handled as in Egs. (19)-(27).
They use N = 8 in each direction and find that for an irreversible,
nonisothermal first-order reaction in the region of multiple solutions,
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FIG. 5. Accuracy vs N in orthogonal collocation method. Same problem as in Fig. 3,
with polynomials defined by w =1, N=1[2, p. 102].

the effectivenesAs factor is not given very well by the curve for
spheres using ¢. They also found some extraneous solutions which
tended to disappear for N = 8. The authors comment that one must
be careful in nonlinear problems to test the adequacy of the solu-
tion, since extraneous solutions are possible. Ferguson and Finlay-
son [34] use the residual to derive error bounds for one-dimensional
problems, and the residual can also be used to see if the solution is
extraneous or accurate.
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4. Application to Sulfur Dioxide

We next consider a specific application— the oxidation of SO, on a
catalyst impregnated with vanadium pentoxide. We use one of the re-
action rate expressions discussed by Livbjerg and Villadsen [35] and
the parameters given there corresponding to the experimental data.
The reaction is

SO, + 4 0, === SO,

and the differential equations governing the problem are

1 d dX

77 ar’ <r’zche,soa—d:,°—2 = —psR (109)
dx

1 d (,, % .

7 ar \U ¢tDe0, g | = T2PeR (110)

1 d dx

7 a (r'chDe,sos.1;$§> = PoR (111)

1 d dT

™ ar (r”ke a) = (—aHJogR

Xsoz = 0.07, XQ2 = 0.11, X302 = 0, T = Tb’
atr' =d,/2

The experimental data was taken in a small-scale reactor designed
to have as little interphase resistance as possible, so that the Biot
numbers are taken as infinite. The reaction rate expression and
other parameters are listed in Table 4, The experimental data was
taken on a 6 mm X 6 mm cylindrical catalyst pellet. We can model
the cylindrical catalyst pellet as a spherical catalyst pellet with the
same volume to surface ratio, which in this case is the length, 6 mm.
Livbjerg and Villadsen [35] report that D, o, = 1.4D, g, and D,,s0,

= 0.9D,,50,- Equations (109)-(111) can be combined to show that

De,o.‘,(xo2 —0.11) = éDe,soz(Xso2 - 0.07) (112)

De’sosxsos = D0,502(0'07 - Xe,soa) (113)
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TABLE 4
Parameters for SO, Catalyst Particle Problem

R =1 (1-B)

B = psoa/(Kppso, Pg. %)

r, = kpo,Pso,/I1+Pso,Kso, + Pso,Kso,)?
k = 3.13 X 107 at 453.6°C

K = 1(5000/T—4.743 atm—%

p
Kgp, = exp[—9.953 + 8619/T]

Kgo, = exp[—71.745 + 52596/T]

T in °K

P = 1310 kg/m?, Cq = 0.0168 (kg)(mole)/m?
Deso, = 0.0149 m?/hr; k, = 1.06 kJ/(m)(hr)(°C)

The reactor is maintained at 1 atm, so that Xso, = Pgo,. The effec-
tive diffusivity was determined by Livbjerg and VilladSen by fitting
the calculations to the experimental data,

The equations can be nondimensionalized to give (with cTDe,802
constant)

1d/,ax ppld,/2)*
_E— r<« —— = _.._._-—R
re dr dr c.,.De’sc>2

Y = 0.07, atr=1

The mole fractions of O, and SO, are given from Eqgs. (112) and (113)
while the temperature is given by Eq. (86). Here we have

(—AHR)c D

T = T + e’soz (0.07 bl X802)

e

and (—AHg)erD, g0, /k, = 2.5°C, so that T is essentially constant,
thus justifying the assumptmn that c¢.D, ,80, 18 constant. The results
of the calculation are shown on Fig. 6, as der1ved using a six-term
collocation solution and a two- element solution. The influence of
intraparticle resistance in reducing the reaction rate are clearly
evident for the larger particles.

G. Multiplicity and Stability

Figure 4 illustrates the fact that for some conditions it is possible
to have more than one effectiveness factor foragiven Thiele modulus.
When this occurs the concentration profiles corresponding to each
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FIG. 6. Effectiveness factor vs sphere radius. SO, oxidation; for rp' < 0.5 cm the
curve is from a 6-term orthogonal collocation solution while for rp' > 0.5 em the curve is
from a two-element orthogonal collocation solution.

effectiveness factor are different. Thus there are many solutions to
the same problem, and the problem is not unique. It is of interest
to determine when this is the case.

The general conditions on the reaction rate expression which re-
quire a unique solution have been worked out [36, 37]. For example,
for a first-order, irreversible reaction with infinite Biot and modi-
fied Biot numbers, the solution is unique when y8 < 4(1 + B). If
multiple steady states occur, then it is of interest to determine the
range of parameter values for that occurrence. Obviously, if we
calculate the entire 7 versus ¢ curve we can deduce under what
conditions, if any, multiple steady states occur. However, we can
sometimes use a one-term orthogonal collocation solution to pro-
vide an approximation to the conditions.

Stewart and Villadsen [38] have developed a graphical technique
for deducing the range of particle sizes, or Thiele moduli, for which
multiple steady states occur. Their technique is especially easy to
apply when the boundary conditions correspond to infinite Biot nym-
bers, so that the concentration and temperature are known on the
boundary. The reaction rate expression is plotted as a function of
concentration, and if the problem is nonisothermal the temperature
is eliminated as a variable using Eq. (86). A one-term collocation
solution is applied to give (B,,X, + B,,)/¢? = &(X,,T,). The left-hand
side gives a straight line, vs X,. Intersections of the two curves
give solutions for X,, and where one line (corresponding to one ¢?)
intersects the curve more than once, multiple steady states are
possible. When Bi = Bi, — « the maximum dimensionless tempera-
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ture rise is B8, and 8 is usually small enough that multiple steady
states do not occur in practice. When the Biot numbers are finite,
the concentration and temperature on the boundary are not known

a priori, but must be determined from the solution. In that case the
graphical procedure of Stewart and Villadson is not as simple to
apply. Then we turn to the two-element orthogonal collocation solu-~
tion devised by Paterson and Cresswell [30].

We use the Eqs. (103)-(105) to determine ¢ as a function of b,
where b ranges from 0 to 1. Then by using the appropriate equa-
tions (106)-(108) to calculate the effectiveness factor, we can trace
out the curve of 17 vs ¢ in the region where multiple steady states
are possible. For the nonisothermal, irreversible first-order reac-
tion in a sphere, the results in Fig. 4 show that multiple steady
states are possible for 8.6 < ¢ < 11.6 using the detailed, orthogonal
collocation on finite element analysis, whereas the one-term Pater-
son-Cresswell approximation gives multiple steady-states for
12 < ¢ < 16. Clearly the approximate results are well within the
accuracy of experimental data for reaction rate constants and
effective diffusivity, so that this simple procedure is sufficient for
most purposes. Multiplicity can also be examined by solution of
the steady-state equations, and Michelsen and Villadsen [39] have
used orthogonal collocation to study a problem having 21 solutions.

1. Stability

Once the steady-state solution is derived for reaction and diffu-
sion in a particle, it is sometimes necessary to examine the stability
of the steady state. If the steady state is unstable, then a small per-
turbation of the bulk gas concentration or temperature will lead to
large changes in the concentration and temperature profiles within
the particle,

The unsteady-state equations for a catalyst particle with a single
reaction are

f = VX — $*R(X,T) (114)

LeaT'f= VRT 4 Be2R(X,T) (115)

oxX oT _ .

oo, Zoo, r-0 (116)
oX

— 7= BlX =X ()], atr=1 (117)
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_g_f_= Bi[T — T,(t)], atr=1 (118)

These equations can be integrated using orthogonal collocation as
illustrated by Eqgs. (10) and (11). Ferguson and Finlayson [40] have
done this for an extreme case with 8 = 0.6. Their example exhibits
three steady states, and the transient problem takes the solution
from one steady state to another. The stability limitations on step
size presented for Eqs. (48) and (49) were developed for this case,

The same problem was also solved using Liu’s method; a stable,
explicit, finite difference method; and the Crank-Nicolson method.
The orthogonal collocation method was from 20 to 40 times as fast
as the fastest finite difference solution, for an accuracy of the flux
at the catalyst boundary of 3% during the transient and 0.1% at
steady state (this was achieved with N = 10 or 12). If the accuracy
requirements are relaxed to 7% during the transient and 3% for the
steady state, then the orthogonal collocation method was only twice
as fast as the finite difference method. This result illustrates a
general feature the author has found on several problems. When
comparing the orthogonal collocation method te a finite difference
method, the orthogonal collocation methed looks more and more
favorable as the allowable error is decreased. Elnashaie and
Cresswell [41] applied both orthogonal collocation and finite differ-
ence methods to problems of this type. They found that the ortho-
gonal collocation method was very accurate, required only a few
collocation points, and used less than 10% of the computation time
of finite difference methods.

Waede Hansen [42] has also integrated these equations and con-
sidered various simplifications obtained by averaging the tempera-
ture over the catalyst pellet. He solved the nonisothermal, irre-
versible, first-order reaction for parameter values of Le =1,
B=0.1, ¢ =1, y=40, Bi =12.5, Bi, = 250, and ¢, = 0.5. For tran-
sients induced by step changes in the boundary conditions, he found
that a model (his model M3) with external, but not internal, heat
transfer resistance did not compare well during the transient to the
complete model given by Egs. (114)-(118). We have repeated the
calculations for a heat transfer coefficient calculated using the lump-
ing procedure, Eq. (80). The results shown in Fig, 7 indicate that in
transient problems the lumping procedure may not be suitable, Of
course, this was for an example with a high Biot number, so that the
distributed aspect of the problem would be important.

The time-dependent calculations are time consuming to perform,
and the results apply only to the particular transient investigated.
Another approach to the stability problem is to linearize the tran-
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FIG. 7. Average temperature of catalyst during transient. The curves labeled with a
value of » are for a model assuming the catalyst temperature is uniform, although dif-
ferent from the bulk stream value. » = 2.734 corresponds to the overall heat transfer
coefficient predicted by Eq. (90).

sient equations about the steady-state solution. The equations are
then

€ = VX — GHRe(WT + R(wX) (119)
aT 2 2

Le — = V2T + 8¢ (R (WT + Ry(w)X) (120)

J%: Bi_ X, —ﬂ- BiT, atu=1 (121)

Here X is the differences between the concentration during the tran-
sient and the steady-state value, and a similar definition applies to
T. The ®; and &y are known functions of position since they depend
on the steady-state solution which has presumably been found using
orthogonal collocation or some other method. The orthogonal collo-
cation method is applied to Eqs. (119)-(121) to obtain

ax, ’ .
-Ef-— E By/'X, — ¢*[Re(u)Ty + Ry(u)X,], j=1,..,N
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with a similar equation for T,(t). The stability of these equations is
investigated by substituting X,(t) = a,e** and T,(t) = b,e™ and looking
for conditions under which the real part of the eigenvalue A is posi-
tive, thus leading to an exponential growth of X and T, or instability.
McGowin and Perlmutter [43, 44] used such a technique and obtained
good results with five interior points. They treated a reactor with
axial dispersion rather than the particle problem.

It is sometimes possible to obtain useful results with a one-term
orthogonal collocation solution, and the detailed analysis is given
elsewhere [2, p. 123; 45]. It shows that the one-term solution is un-
stable whenever Q is negative:

_10.5 _Bi 10.5Bi, _ ARy

Q= Le 3.5+Bi 35+ Bi, Te ' Ry (122)

The value of &, and ®y to be used here can be the appropriate values
calculated using the approximate one-term collocation steady-state
solution,

Calculations by Luss and Lee [46] and Lee et al, [47] indicated
that better results could be achieved if the values of ®; and Ry are
taken as the average values determined by an accurate solution to
the steady-state problem. In other words, if orthogonal collocation
is used, then one must use a high enough N to achieve an accurate
value of the average values of R, and &,. Equation (122) can be re-
arranged to give

|1 10.5Bi 10.5Bi,,
Q ‘[ré‘ 358 f"‘"T] * [3_51_131,,, *‘“x]

The last term is positive when &y is positive, as is usually the case,
so that if & is small enough the first term is positive, too, and
Q > 0 for all Lewis number. For larger values of ®,, however, the
first term can be negative. In that case Q will still be positive for
large Lewis number, but can be negative for small Lewis number.

Luss and Lee [46] present an example in which the strongly re-
acting steady state is unstable for Le = 0.2, and presumably for
smaller Le. The Le, predicted by Luss and Lee [46] using a special
lumping procedure was 0.12. Orthogonal collocation, using the
average values of &, and Ry reported by Luss and Lee gave Le,
=0.21, which would say the case with Le = 0.2 should be unstable,
as it was. Orthogonal collocation, using a one-term approximation
to compute &, and Ry, predicted that the solution would be stable

regardless of how small Le become, and this disagrees with the
more precise results. Thus when the solution has sharp gradients
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it is better to use the average values of &, and Ry computed with a
high order approximation. Lee et al. [47] devised a lumping proce-
dure similar to that of Luss and Lee. For the third case in their
Table 1, they predict the steady-state solution will be unstable when
B/Le < 1.546. If orthogonal collocation is used for the lumping, and
average values of ®; and R, are used from a precise steady-state
solution, then the steady-state should be unstable for 3/Le < 1.32,
In fact, the detailed calculations showed that instability occurred at
B/Le = 1.3. Often it turns out that Le < 1 is required for instability,
and the values of Le listed by Hlavicek et al. [48] indicate that

Le > 1 for most industrial reactions. Thus these results are not

of widespread practical importance, but it is interesting that a one-
term collocation method can give a correct qualitative picture of the
instability,

H. Results

We now apply these techniques to the sulfur dioxide reactor. A
general description of the reactor is given in Section III-A, We have
seen that radial and axial dispersion are both expected to be im-
portant in this reactor. External resistances to heat and mass trans-
fer are also important,

The dimensionless equations governing this reactor are then

92X X a 3 [ X ,
Vo2 3z r or (r ar) Da,’o(X — X,) =0 (123)

2T T o '

dz? 2z or
ax o’
3I._.= 0, -aT= 0, atr=0 (125)
T ., X
‘F = —Blw(T b Tw), T 0, atr =1 (126)
3 2
v Xk, Y+ VITRIT - T,),  atz=0
(127)
a !
’; -0, 7’%l=-;-[l—w/_l+A_1](T'—Tw), atz=1
z (128)

A‘ = 24al"yi'Bi1/(Bi1 + 3)
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The parameters «,, etc., refer to the inlet (i = 0) and outlet (i = 1)
sections. The exact boundary conditions are derived by Young and
Finlayson [27], and the approximate boundary conditions are derived
there also by using a one-term (in the radial direction) collocation
solution in the inlet and outlet portions of the reactor. Various
parameter values are listed in Table 3.

The orthogonal collocation formulation of Eq. (123) is

NZ +2 NR +1
22 [}’BZ,g -_ AZ)Z]XLQ + 22 BRlEXAj + Da]'U(Xsu -_ X“) = 0,

=] =1

(129)
i=1,...,NR, j=2,...,NZ +1
NZ +2 NZ+2
YEZZ AZuXu = Xu, 12 AZN,z’kxtz = 0, i= 1, “o ey NR
= =1

NR +1 .
RZ ARN&I’!.le = 0’ ] = 2, ooy NZ +1

a1l

with similar equations for temperature, The location of collocation
points is illustrated in Fig. 8 for NZ = NR = 6. The orthogonal
collocation solution results in zero residuals at each interior
collocation point, i.e., Eq. (129) is satisfied there, and the inlet

(or outlet) boundary conditions are satisfied at the points marked O,
while the radial boundary conditions are satisfied at the points
marked X. No conditions are applied at the corners (see footnote

in Section II-E).

LENGTH
0.50 0.75 1.00
______ i_ e
|
B Sy A
R, A - - o - -
_———frm et —— e A o

FIG. 8. Grid of collocation points for cylinder. NR = 6, NZ = 6 was used for SO,
reactor: (0) inlet or outlet axial boundary condition satisfied; ( X) radial boundary con-
dition satisfied.

To solve the equations we first solve the boundary conditions for
the boundary value of X or T in terms of the other values. These
values are substituted into Eq. (129) and give equations having as
the unknowns the values of X and T at the NZ XNR interior colloca-
tion points, The collocation points are renumbered to represent the
unknowns as X,, k =1, ..., NR XNZ rather than as X;;,i=1, ..., NR,
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j=2,...,NZ +1, Then the equations are solved using either a
Newton-Raphson or a successive substitution method. At each itera-
tion the Newton-Raphson method requires two matrix inversions, and
the matrices are (NR X NZ)(NR X NZ) in size. The successive sub-
stitution method required two matrix inversions on the first itera-
tion only, but required more iterations to converge (12 rather than5).
The net effect was that the Newton-Raphson method took 23 sec* to
solve the equations, while the successive substitution method re-
quired only 10 sec.* Both estimates are for NR = NZ = 6, resulting
in 36 X 36 matrices.

Next consider accuracy. Using the NR = NZ = 6 case as the com-
parison, calculations with NR = 6 but NZ = 4 and 5 gave outlet con-
versions within 7 and 1.5% of the solution with NZ = 6, The radial
model, without axial dispersion, used an improved Euler method of
integration and gave values of outlet conversion for 50 and 250 axial
steps (Az = 0.02 and 0.004) that were within 1.2 and 0.3%, respec-
tively, of the solution with 500 axial steps. Thus using the ortho-
gonal collocation method in the axial direction drastically reduced
the number of points needed from 250 to about 6. For a different
case, the laboratory reactor of Olson et al., [10] (see Table 3), it
was found that the solution was relatively insensitive to NZ for
NZ =2, 3, 5, and the outlet conversion varied with NR, having
errors of 1.4 and 0.4% for NR = 2 and 3, respectively, compared
to solutions derived with NR =4 or 5. Using NR = 4 and NZ = 2
(resulting in 8 X 8 matrices), the computation time per case, using
Newton-Raphson, was 0.4 sec. For this reactor hundreds of calcu-
lations were made in order to do a nonlinear least-squares regres-
sion analysis of the rate equation.

Next we compare results predicted by different models which in-
clude or exclude various heat and mass transfer phenomena, All the
models discussed include the external resistance. First we consider
a model which leaves out radial mass dispersion (@ = 0), with radial
heat transfer lumped using Eq. (53). These are obtained by using
N =1 in the orthogonal collocation formulation, Eq. (129). The re-
sults of average conversion and temperature vs length of the reactor
are shown in Fig. 9 as Curves N, Clearly this model does not com-
pare well to the experimental data. Next we add in the effects of
radial dispersion. The Curves B in Fig. 9 show that for average
conversion very good agreement is obtained with experiment when
both axial and radial dispersion are included. The difference between
Curves N and B also show the effect of increasing the number of
radial collocation points from 1 to 6. Finally, we include radial dis-

*CPU time on CDC 6400 computer.
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FIG. 9. Average concentration and temperature profiles in SO, reactor. Axial dis-
persion models, NZ = 6: B-NR = 6, N-NR = 1; radial model, y=v'=0: C-NR =6.

persion, but not axial dispersion. The equations are then Egs. (123)
and (124) with y = ' = 0, and these are solved using the orthogonal
collocation method as illustrated in Eqgs, (48) and (49). If the inlet
condition is the measured value of 370°C, then the model does not
compare as well to the experimental conditions as shown by Curve C
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in Fig. 9. Additional calculations are presented elsewhere [27]. We
note that the main effect of axial dispersion in this case is to raise
the reaction rate at the inlet to the reactor, and the consequences of
this increase are felt throughout the bed. Furthermore the radial
distribution of temperature near the inlet is very important and
affects the outlet conversion.

Thus we see that the orthogonal collocation method is useful for
solving the complicated nonlinear equations arising from a laboratory
scale packed bed reactor. We apply the method to an industrial reac-
tor in the next chapter,

IV. AMMONIA REACTOR WITH COUNTERCURRENT COOLING

A. Description of Reactor

Industrial reactors are often cooled by the feed stream to the re-
actor. An example of this is the TVA ammonia reactor represented
schematically in Fig. 10. The inlet gas flows up inside a number of
tubes which are surrounded by a packed bed of catalyst. At the top
of the reactor the gas reverses direction and flows down through
the packing. There are also other heat transfer elements of the re-
actor which are not considered here. Additional details of the reac-
tor can be found in Refs. 49 and 50, and Ref. 50 gives operating and
construction details. We are concerned here with the countercurrent
nature of the heat transfer. Since the gas stream is heated as it
flows up the tubes, the inlet temperature to the reactor bed (i.e., at
the top of the reactor) is not known a priori, but depends on the heat
transfer that has taken place. The reactor and heat transfer sec-
tions must be solved simultaneously in a simulation, as is done below.

First we investigate the various limitations to heat and mass
transfer. Radial dispersion is more difficult to analyze here, since
the inlet gases flow up the inside of the tubes and then flow down
through the packed catalyst bed. Thus the catalyst is on the outside
of the tube and the geometry is more complicated. The tubes are
located in a hexagonal pattern. We must consider radial tempera-
ture gradients due to the cooling tubes as well as at the basket wall.
Kjaer [51] estimates the combined heat transfer coefficient between
the gas in the cooling tube and the gas in the catalyst bed as 905 kJ/
(m?)(hr)(°K), based on the outer diameter of the tubes. To calculate
a Biot number, we estimate k, from Pe = 10, giving k, = 37.2 kJ/
(m)(hr)(°K). To get an effective radius we calculate the catalyst area
per tube and figure an equivalent radius assuming a circular cross
section, This gives R = 0.054 m, which gives Bi,, = 1.3, If a more
precise analysis is desired, we could use the orthogonal collocation
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FIG. 10. Schematic of ammonia reactor. Hatched areas are catalyst bed, and clear
areas are cooling tubes.

method to solve for the heat transfer in an annulus with a constant
rate of heat generation and a zero flux condition at the outer wall.
Such an analysis, for N = 1 and a uniform rate of reaction, reveals
that for Bi,, = 1 about 70% of the temperature drop occurs at the
boundary of the tube and 30% occurs across the packed bed. Thus
radial temperature gradients should be small but not necessarily
negligible. In fact, Slack et al. [50] reported radial temperature
variations, and Refs. 49 and 51 indicate these are probably caused
by the fact that the center thermocouple tube replaces a cooling
tube, while the off-axis thermocouples are in the middle of an equi-
lateral triangle formed by three cooling tubes. Thus the effective
area for cooling is different for a center thermocouple and an off-
axis thermocouple, leading to local temperature variations. Here
we use a lumped parameter model with an overall heat transfer co-
efficient.
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We next consider axial dispersion and apply the criteria, Eq. (61).
We note that the errors introduced by axial dispersion decrease as
the flow rate is increased, so that we expect the axial dispersion is
not important in this industrial reactor, The criteria give a maxi-
mum error at the inlet of 0.1% in the concentration and 0.3°C in the
temperature. A maximum of 0.6°C was also found by Eymery [52],
who did complete calculations for two models, one including and the
other excluding axial dispersion. These values are so small that we
neglect axial dispersion. We note, however, that due to the coupling
between the reactor section and the heat transfer section, the inclu-
sion of axial dispersion would not add to the computational difficul-
ties, provided we use the orthogonal collocation method or some
other method which treats the problem as a boundary value problem.

To examine the importance of external resistances, we apply
Eq. (73):

AT,/ = 0,7(—AHR2)(CN2 - c,,z’eq)/(pc,,) = 390°K

The factor 2 is included because the heat of reaction is based on a
mole of ammonia, and the concentration is the concentration of
nitrogen. This value is so large that we expect the reactor to be
operated in such a way that the effectiveness factor is near 1 so
that the concentrations of nitrogen and hydrogen do not drop to zero
inside the catalyst when the concentrations outside the catalyst are
the inlet values. If we use a value of pgR, = 100(kg)(mole NH,)/(m?)(hr)
and solve Egs. (63) and (64), we find the concentration changes 0.1%
across the mass boundary layer and the temperature changes 1.2°K.
Estimates of Bi and Bi,, give 8 and 170, respectively. Thus external
mass transfer limitations are negligible and external heat transfer
limitations are small, but could change the rate by 5%. However,
the reaction rate data used below were measured under conditions
similar to those encountered in the reactor, and include whatever
resistances, internal and external, that are important.

B. Equations

The equations are taken from Baddour et al. [49] and represent
mass and energy balances on the catalyst bed and the cooling tubes:

dx

ax _ (1 +X)?
dz

®(X,T) 1+X,)

f(x)%: —A(T — TT) + (A, + A,T)R(X,T)

dTT
5 = A(TT = T)
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The variables are defined in the notation and Table 5. The heat
capacity and heat of reaction are permitted to vary with temperature
in a linear fashion,

TABLE 5

Parameters for TVA Ammonia Reactor?

Dyasket = 1.10 m;dy, = 5.18 mm (mesh sizes 3-6); number of tubes = 84;L = 5.18 m;
Dy, = 0.0508 m; D;; = 0.0381 m

Re = 1640;Pr = 0.7;Sc = 0.4;e = 0.4; —AHp = 46,200 kJ/(kg)(mole)

Cpo = 30.7 kd/(kg)(mole)}(°K); AC, = 13.6 kJ/(kg)(mole)(°K)

(X) = 1— ACp(X—X,)
Cpo(1 +X)

A 1
REXT) = = - exp[—7/Tlg (X,T)
oVe

gXT) = KpplAB—y)'° (C—y)y — (DYAB—y)'*

A= (15 =Xy, (1 +X,)*5/3

B= (Xy,, + 15X )15 =Xy, )

C= (n,, +0.5%,)/(05—Xy, )

D= L+ %)/ (15— Xy, )

A = 359 X 1.75 X 106 p™0s

y = E/R,T, = 20,300 °K/T,

In K, = —13.02 + 11.96/T

T, = 501°K; V, = 13,800 hr!

A, = 1.354; A, = 2.738; A; = AC,/Cpy = 0.444
Inlet mole fraction: H,, 0.6375; N,, 0.2125; NHj, 0.05; inert, 0.10

2In the ammonia reactor X is mole fraction.

It is clear that if we knew the value of T and TT at the point z = 0,
we could integrate these equations as initial value problems using
any of several methods, such as the Runge-Kutta method. This is
what Baddour et al, [49] did. In our case, however, we want to solve
the simulation problem where the boundary conditions are

X =X, T =TT, atz=0
TT =T, atz=1

Since the boundary conditions are at both ends, we cannot integrate
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the equations as initial value problems. This factor complicates the
solution. We apply orthogonal collocation by writing

=

+2
AX =RX,T)1 +X)?/1 +X,), j=2,...,N+2
=1 (130)

i

N+2
i=1

j=2,...,N+2
(131)
N+2
Z} AJ‘TTi = AI(TT’ bl Tj), j = 1, ey N+1 (132)
i=1

together with the boundary conditions
X, =X, T, = TT,, TTy,, =T,

Note that we collocate at j = 1 (z = 0) for the tube temperature, since
the corresponding boundary condition isatj =N + 2 (z = 1).

The equations are solved by a successive substitution method.
First the boundary conditions are included in Eq. (130)-(132) and
the equations are rearranged:

N+2

12 ApX ™ =®M1 + X,9%/(1 + X)) — A X,
=2 .

N+1

‘Z; A“TT|k".l = AI(TTij' — T’k) -_— A),N*ZTD
=1

Ne2
f(xjk)E A uTihl = —Al(Ti‘m - TTik) + (Az + AsT!k)(Rik
i=2
— f(X;%)A,,TT
The two matrices are inverted only once at the onset of the calcula-
tion. Since at each iteration only matrix multiplication is necessary,

the calculations are efficient even for a large N. The new iteration
is then determined using a relaxation factor of RF = 0.5, e.g.,

Xe1 = Xk o RF(xkﬂ - xk)
C. Resulis

The results of the calculation are compared in Fig. 11 to the ex-
perimental data reported by Baddour et al. [49]. The calculated
curve is slightly different from the actual curve, probably due to
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FIG. 11. Temperature and ammonia mole fraction as a function of reactor length.

inaccuracies in the application of the rate expression, the activity,
or heat transfer coefficients. We note that Baddour et al. [49] ad-
justed the coefficients for heat transfer between the reactor and
cooling sections in order to obtain agreement with the actual re-
sults. The results for N = 6, 12, and 24 show that N = 12 is ade-
quate to solve this problem.
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V. REDUCTION OF NITRIC OXIDE IN AUTOMOBILE EXHAUST
A. Introduction

We next consider the removal of nitric oxide which is emitted to
the atmosphere from automobile exhaust. The exhaust stream con-
tains carbon monoxide and hydrogen, and the nitric oxide can be re-
duced by means of the reactions

NO + CO = iN, + CO,
NO +H, = iN, +H,0

We leave out the side reaction of NO with hydrogen to form ammonia
and water due to the unavailability of reaction rate data.

The reactor configuration is very flat and only a few particle
diameters long (L/d, = 15). The dimensions were chosen based on
the suggestion of Baker and Doerr [53] that about 2.8 X 10~ m® of
catalyst would be required, and the length to diameter ratio (1/6) is
that described.by Wei [54]. This gives a diameter of 0.28 m and a
length of 0,046 m. Thus the reactor is more of a pan shape with
axial flow. The unusual geometry is a result of the desire to have
as small a pressure drop as possible.

The bed is packed with catalyst with a 0.0032-m particle diameter.
The rate expressions were measured on copper chromate catalysts
and are used here as typical examples and because data were avail-
able. The transient operation of the reactor is of primary impor-
tance, since the pollution standards for automobiles are based on
operation of the vehicle at a range of speeds and driving conditions.
Thus one important feature of the analysis is which time-dependent
effects must be included and which can be neglected. We find below
that internal mass transfer resistances are important, but that the
particle problem can be solved at steady-state corresponding to the
instantaneous catalyst temperature. This means that the reaction -
rate can be evaluated at the conditions of the gas stream, provided
a formula exists for the effectiveness factor. Unfortunately, there
are two reactions, since the nitric oxide can be reduced by both
carbon monoxide and hydrogen. The reaction rate expressions for
each of these reactions depends on the concentration of nitric oxide,
so that the effectiveness factor for each redction is not a unigue
function of the conditions for that reaction alone, but depends on the
other reaction, too. Thus we felt it was impractical to determine
the effectiveness factors a priori, so that they must be calculated
throughout the transient. In such a case the orthogonal collocation
method is especially useful, since the boundary value problem can
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be accurately and efficiently solved using the orthogonal collocation
method. Since this calculation must be performed thousands of times
during the transient, any computational savings achieved by using
orthogonal collocation is welcome.

B.- Important Heat and Mass Transfer Phenomena

We first examine the radial dispersion, which might be expected
to be important due to the large radius. Using a Peclet number of
10 and Eq. (57) to calculate the Nusselt number, and hence the heat
transfer coefficient, we obtain a Biot number of 50 for a case with a
flow rate of 50 SCFM (85 m3/hr). Since the heat transfer coefficient
and effective thermal conductivity of the bed depend on flow rate, the
Biot number will, too. However, this value is so large that it sug-
gests that the major resistance to heat transfer is inside the bed and
a distributed parameter model must be used to account for radial
temperature and concentration variations. Calculations for the
steady state were made using two models—one a distributed param-
eter model taking account of radial variations, Eqs. (39)-(43), and
the other a lumped parameter model, Eqs. (44) and (45) [55]. The
results show that while the temperature difference between the
center and the wall of the bed was from 6 to 18°C, the radial varia-
tion of NO concentration was less than 3%. Consequently, it was
decided to use a lumped parameter model, with a temperature aver-
aged radially in the bed. Of course it is necessary to use an overall
heat transfer coefficient calculated using Eq. (53) since the major
resistance is not the heat transfer coefficient at the wall, h,, but is
inside the bed, acting through k,. If we had used just the wall heat
transfer coefficient for a problem with such a large Biot number,
we would have grossly overestimated the rate of cooling. For ex-
ample, h,, is 225 kJ/(hr)(m?)(°C) while U is 16 kJ/(hr){(m?)(°C).

Axial dispersion might be expected to play a major role in such
a short bed since it is essentially isothermal. To investigate this
possibility we apply Egs. (61) and (62), For estimations of the reac-
tion rate we consider a case of 1000 ppm NO, 1% CO, and 200°C,
which gives pgR = 3.7 (kg)(mole)/(hr)(m?). Under these conditions
we obtain a temperature increase of 2°C at the inlet to the bed and
a concentration decrease of 0.01% due to the inclusion of axial dis-
persion. Furthermore the reactor is almost isothermal, so axial
dispersion would be even less important away from the inlet. Thus
we neglect axial dispersion.

Next consider the external heat and mass transfer resistances.
Equation (71) predicts a maximum temperature increase in the
catalyst of 7°C, while Egs. (63) and (64) predicts a 1°C temperature
change and a 15% concentration change. External mass transfer re-
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sistance has a small effect, and we are tempted to say external heat
transfer resistance is unimportant. However, Eq. (64) is based on

a steady state, and in this transient situation we cannot use it to de-
duce whether we can take T, = T, In fact, we see below that the
slowest response of the system is the time for heat transfer between
the gas and catalyst. To examine the intraparticle resistance we
calculate typical values of Biot and modified Biot numbers, obtain-
ing Bi, = 130 and Bi = 0.8. These values indicate that a lumped
parameter model is adequate for heat transfer in the particle, and
that the major mass transfer resistance is inside the particle,
rather than at the film outside the particle. To find the effect of 7
vs ¢, consider the following simplifications. For large CO concen-
trations the reaction is essentially first order in NO concentration.
Since the temperature increases are so small, let us estimate the
importance of internal resistances by using the results for an irre-
versible, first-order isothermal reaction. Using a pseudofirst reac-
tion rate constant k' = p_,R/C, = 4.1 X 105/hr gives a Thiele modulus
of 8 and an effectiveness factor of about 0.4. Thus intraparticle
mass transfer resistances are important and must be included in
the model.

C. Quasi-Static Model

We model the reactor as a series of four mixing cells. While
this introduces some axial dispersion, the effect is not great and
the number of mixing cells is not crucial. The advantage of doing
this is to reduce the number of grid points in the axial direction
compared to direct integration of equations such as (50) and (51).

The mathematical model applied here is a quasi-static model
which accounts for the fact that some of the transient phenomena
occur extremely rapidly and some transient phenomena are very
slow. The slowest time-response of the system is for heat transfer
between the gas and the catalyst with a time constant 7, = (pC,),d,/
(6hy). When the residence time in a mixing cell, 7, = ¢V/F, is less
than 7,, Ferguson and Finlayson [56] suggest the accumulation terms
can be dropped in the fluid mass balance. Here 7,/7, = 5000. When
the volumetric heat capacity ratio, C, = pC,/[(1 — €)(oC,),], is less
than 0.002, then the accumulation terms can be dropped from the
fluid energy balance [56]. Here C, = 0.0002. When the time constant
for mass transfer in the particle, 7, = ¢,R,?/D,, is smaller than 7,,
the accumulation term can be neglected in the particle mass balance.
Here 7,/7, = 0.02. Also, due to the small Biot number, the particle
energy balance can be lumped. With these assumptions the dimen-
sionless equations used by Ferguson and Finlayson are
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0=vX, — ;;;d" (R, +R,) (133)
aa}; _Bi (X —X), atr=1 (134)

qd_Tt_ T—T,+ ‘;f: [—aH(R,) — AH(R,)] (135)
0=X,(t) —X+ %&J&%—ﬂ[xs - X] {136)
0=T,t) — T + f_%[rs — ] (137)

where X is the nitric oxide concentration, and similar equations are
written for CO, while H, is determined by stomluometry The brack-
ets here refer to mtegrals over the volume, (R,) = [gR,r? dr. Equa-
tion (137) can be solved for T and substltuted into the Eq (135) to
eliminate the fluid temperature T from the equation. A similar
manipulation eliminates X from Eq. (134), giving

X, _ Biy =
52 aXa® - x40, atr=1 (138)

ka’No(l - G)V
=T aF

We have found in other calculations [55], as have Elnashaie and

Cresswell [41], that better results are achieved if we integrate

Eq. (133) to obtain

X,

R e (R, +(R))

and write the boundary condition as

4De,No ® (R, +(R,)) = i A[x,,,(t) X.(1,9] (139)

Orthogonal collocation is applied to this equation using the quadrature
formula

Bi
4D - iZ)lw‘(R“ +Ry)) = 12 [Xpu(t) — Xq (140)
o N0 1
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Orthogonal collocation is then applied to Eq. (133) as in Egs. (97)
and (98), and if we use polynomials defined by w =1 [2, p. 102] so
that Wy,, = 0 for N > 2, we obtain

N p d 2
‘El B“Xsi =—a—ﬁ%)(R1’ + R2i) - B’,NOIXS,NOI (141)

with X, nu determined from Eq. (140). This equation is solved by
assuming the NO equation is first order and using the iteration
scheme outlined in Section III-F. The CO equation is solved by
successive substitution, which works here because CO is in great
excess and the concentration changes only slightly. We thus inte-
grate Eq. (135) in time, using an improved Euler scheme, and solve
Eqs. (140) and (141) at each time step. The physical properties are
permitted to vary as their dependence on inlet temperature dictates.
Detailed calculations have shown that using N = 3 was adequate,
giving results within a few percent of those obtained with N = 6. The
time step for the integration varied between 1 to 4 sec.

D. Results

The calculations were done by Ferguson [55] for inlet conditions
simulating the Federal Test Procedure for testing automobile pollu-
tion levels. Typical inlet and outlet nitric oxide concentrations are
shown in Fig. 12, More information on the effect of changing catalyst
properties and details on other models are given elsewhere [56].

This application of the orthogonal collocation method to a tran-
sient problem used a cell model. Other applications [16, 18, 57]
used a continuum model, such as the time-dependent version of
Eqs. (34)-(38). Waede Hansen [57] handles the quasi-static model
by using the fully dynamic model (without neglecting accumulation
terms) for a small interval and then using the quasi-static model.
Calculations by Ferguson and Finlayson [56] indicate this is not
necessary here.

In this application the orthogonal collocatipn method was useful
because the effectiveness factor problem could be solved efficiently
using N = 3, While a cell model was used here, if continuum models
were used the orthogonal collocation method could be applied to those
aspects of the problem, too, as was done in Sections III-IV.

VI. OTHER APPLICATIONS

We have seen how to apply orthogonal collocation to three diverse
reactors. There are other possible reactor models, too. Inthe model
proposed by deWasch and Froment [58] the reactor continuum is
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FIG. 12. Nitric oxide concentration (—) inlet value, (C) outlet from reactor during
the first cycle, (v) outlet during the seventh cycle of Federal Test Procedure.

divided into two phases, the catalyst and fluid phases, but radial
conduction is permitted to occur in the solid phase, and radial dis-
persion in the fluid phase is only due to conduction through the fluid
and convection, Orthogonal collocation can be applied to such models,
too, using the same ideas outlined in Section II-C.

Orthogonal collocation can also be used when the concentration
and temperature gradients are steeper than those shown here. In
other (unpublished) work, Mr. Larry C. Young has used orthogonal
collocation for a steady-state reactor with radial and axial disper-
sion. Both space dimensions were treated using orthogonal colloca-
tion, and the iteration was performed using the Newton-Raphson
method. The cases treated had a severe hot spot, with the tempera-
ture rising to the adiabatic temperature. Thus the axial tempera-
ture and concentration profiles were very steep and as many as 40
terms were included in the axial direction. When using this many
collocation points the matrices for first and second derivatives
were calculated using a revised version of the scheme outlined in
Ref. 3. In a problem such as this, orthogonal collocation on finite
elements is also a candidate method, and sufficient experience has
not yet been obtained to give guidelines between the choices of a
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global expansion, valid over the entire reactor length, or expansions
only on finite elements for this problem.

One reactor configuration being considered for catalytic mufflers
is 2 monolith in which the reactants enter a honeycomb and flow down
small, long tubes. Catalyst coats the walls and the reaction occurs
there, One model of such a device [59] formulated the Graetz prob-
lem for heat transfer in a duct. If this is solved for arbitrary wall
temperature and wall heat flux, then the chemically reacting case
can be reformulated as an integral equation involving only proper-
ties on the solid walls, and the eigenvalues and various constants
from the Graetz problem can account for the diffusion and convection
of heat and mass in the fluid. Such a formulation is simpler to solve
than the combined multidimensional equations in the wall and fluid,
The orthogonal collocation method is used to solve the Graetz prob-
lem, giving the necessary eigenvalues and parameters, and ortho-
gonal collocation can be applied when solving the integral equation,
too.

The orthogonal collocation method has only recently been applied
in the field of control, Michelsen et al, [60] considered a reactor
with convection but no radial or axial dispersion. For control pur-
poses the equations were linearized around a steady state, Ortho-
gonal collocation was applied in the axial direction to reduce the
problem to a set of ordinary differential equations in time, Laplace
transform methods were then applied to these equations and the
various transfer functions examined. Up to 12 collocation points
were used with good results, In a companion paper the formulation
was applied to a control and estimation problem [61].

The author believes that the full potential of the orthogonal collo-
cation method to reduce the dimensionality of a control problem
(reduce the number of ordinary differential equations in time) has
not yet been fully realized and utilized, This would seem to be an
important area for further applications,

VII. CONCLUSIONS

The orthogonal collocation method is a versatile technique for
solving models of chemical reactors. The method has been applied
to the full range of situations: steady state and transient, continuum
and cell models, radial and axial dispersion, internal and external
resistances to heat and mass transfer. While all combinations have
not been done, the methods are clear and a combination of those out-
lined here. Early papers in the field, which began only in 1967, ex-
pounded on the method and compared it with other techniques (in
particular finite difference methods) while later papers involved
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application to specific situations. The orthogonal collocation method
has proved to be a very efficient tool for chemical reaction engineer-
ing and will be used increasingly in the future.

SYMBOLS

1, 2, or 3 for planar, cylindrical, or spherical geometry
constants in trial function

surface area of catalyst/bed volume, m!

matrix representing first derivative

length of effective reaction zone in catalyst

Biot number for catalyst, h,d,/(2k,)

Biot number for mass transfer, k. d,/(2D,)

Biot number for packed bed, h,r /k,

matrix representing Laplacian operator or second deriva-
tive

gas concentration, (kg)(mole)/m?

total concentration, (kg)(mole)/m?

heat capacity, kJ/(kg)(°C)

ratio of volumetric heat capacities of fluid and solid,
e,/ (1 — ©)(oC,),

catalyst part1c1e diameter, based on sphere with equiva-
lent volume/area, m

gas diffusivity, m?/hr

effective diffusivity in catalyst, m?/hr

radial effective diffusivity in packed bed, m?/hr

axial effective diffusivity in packed bed, m?/hr
Damkoler Group I, pgpLR(C,,T,)/(GC,)

Damkoler Group III (—AHR)ppLR(C,,T,)/ (€ oTo)
ppsL/(GC,) = Day/ Ro, (kg)(cat)(hr)/(kg)(mole)
ps(—AHR)L/(GC,) = Day, To/R,, (kg)(cat)(hr)(°K)/(kg)(mole)
activation energy, kJ/(kg)(mole)

dimensionless reaction rate in Section II

volumetric flow rate, m3/hr

mass flux based on empty tube area, kg/(m?)(hr)

heat transfer coefficient for transfer between fluid and
catalyst, kJ/(m?)(hr)(°C)

heat transfer coefficient at reactor wall, kJ/(m?)(hr)(°C)
heat of reaction, kJ/(kg)(mole)

j-factor for heat transfer, Nu Re,'Pr-1/3

j-factor for mass transfer, Sh Re ,8ct/3

reaction rate constant, (kg)(mole)/ (hr)(kg)(cat)(atm?)
also dimensionless reaction rate constant

also gas thermal conductivity, kJ/(m)(hr)(°C)
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K, effective thermal conductivity in catalyst, kJ/(m)(hr)(°C)

K mass transfer coefficient, m/hr

k. radial effective thermal conductivity in packed bed,
kJ/(m)(hr)(°C)

k, axial effective thermal conductivity in packed bed,
kJ/(m)(hr){°C)

K, constant appearing in rate equation, atm-™!

K, constant defined by Eq. (87)

L reactor length, m

Le Lewis number, pC,De/k

N number of 1nter10r collocation points

NE number of elements

NR number of interior radial collocation points

NZ number of interior axial collocation points

Nu Nusselt number, h,d /k

Nu, Nusselt number, h,d /k

P partial pressure of i-th component, atm

P, i-th order orthogonal polynomial

Pr Prandtl number, Cu/k

Pe, . radial heat Peclet number, d,GC /k,
Pe, . axial heat Peclet number, a GCD/k
Pe, . radial mass Peclet number d,G/(pD,)

Pe, . axial heat Peclet number, d,G/ (oD,)

r radial position, r’/r,

T, radius of packed bed, m

r’ radial position in packed bed, m

R reaction rate, (kg)(mole)/(hr)(kg)(cat)
R, gas constant, kJ/(kg)(mole)(°K)

Re, Reynolds number, d,G/u

® reaction rate, dimensionless

Ry dR(X,T)/dX

Ry 3R(X,T)/oT

S radial position in catalyst, m or (u — b)/(1 — b)
Sc Schmidt number, pD/u

Sh Sherwood number, k. d /D

St Stanton number, U/(GC,)

t time, hr

T temperature, T'/T,

T’ temperature, °K

TT cooling tube temperature, dimensionless
u normalized position in catalyst particle, 2s/d,
u shifted coordinate in finite element

\' volume of mixing cell, m3

W, weighting factor in quadrature formula

X spatial position
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Xy

¥
¥

14

location of k-th element

normalized concentration, C/C,

mole fraction of ammonia in Section IV
trial function

value of y at i-th collocation point
axial position, z’/L

axial position, m

Greek Letters

4 Qe

MmN R R D™

o
[

" >3

Q;Q;D‘Ot

pD,L/(Gr,?) or d,L/! (rl,zPem 2

k L/ (GC o) or d L/ (2 Pe,l o)

(—AHR)D Co/ (k. T)

E/R,T, and pD,/(GL) = d,/(LPe,, )

k /(LGC » =d/(LPe, ;)

B1,,/B1

catalyst bed void fraction

aspect ratio in Section II-E

catalyst void fraction

effectiveness factor, defined by Eq. (85)
eigenvalue in stability analysis

viscosity of gas, kg/(m)(sec)

dimensionless overall heat transfer coefficient
gas density, kg/m?

catalyst density, (kg)(cat)/(cat){vol)(m?3)

bulk catalyst density, (kg)(cat)/{(vol of bed)(m?)
kna,Co/0p

h,a,/(—AHgpg)

charactenstxc time for heat transfer between catalyst
and gas (pC,).d,/(6h,), hr

charactenstm time for mass transfer in catalyst, e,d 2/
(4D,), hr

residence time in mixing cell, eV/F

Thiele modulus squared, (d,/ 2) psR/(C,D,)
2V, e/(Ad)

Subscripts and Superscripts

eq
0
i,j
p

dimensional variable; also thermal variable in SO, reactor
equilibrium value

inlet or reference value

i-th or j-th collocation point

result from plug flow model without axial dispersion
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s value in solid (catalyst)
w value on wall
~ per mass
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